Struct Triangle

Source
pub struct Triangle<T = f64>(pub Coord<T>, pub Coord<T>, pub Coord<T>)
where
    T: CoordNum;
Expand description

A bounded 2D area whose three vertices are defined by Coords. The semantics and validity are that of the equivalent Polygon; in addition, the three vertices must not be collinear and they must be distinct.

§Notes

Irrespective of input order the resulting geometry has ccw order and its vertices are yielded in ccw order by iterators

Tuple Fields§

§0: Coord<T>§1: Coord<T>§2: Coord<T>

Implementations§

Source§

impl<T> Triangle<T>
where T: CoordNum,

Source

pub fn new(v1: Coord<T>, v2: Coord<T>, v3: Coord<T>) -> Triangle<T>

Instantiate Self from the raw content value

Source

pub fn to_array(&self) -> [Coord<T>; 3]

Source

pub fn to_lines(&self) -> [Line<T>; 3]

Source

pub fn to_polygon(self) -> Polygon<T>

Create a Polygon from the Triangle.

§Examples
use geo_types::{coord, Triangle, polygon};

// Input is CW
let triangle = Triangle::new(
    coord! { x: 0., y: 0. },
    coord! { x: 10., y: 20. },
    coord! { x: 20., y: -10. },
);

// Output is CCW
assert_eq!(
    triangle.to_polygon(),
    polygon![
        (x: 20., y: -10.),
        (x: 10., y: 20.),
        (x: 0., y: 0.),
        (x: 20., y: -10.),
    ],
);

Trait Implementations§

Source§

impl<T> AbsDiffEq for Triangle<T>
where T: CoordNum + AbsDiffEq<Epsilon = T>,

Source§

fn abs_diff_eq( &self, other: &Triangle<T>, epsilon: <Triangle<T> as AbsDiffEq>::Epsilon, ) -> bool

Equality assertion with an absolute limit.

§Examples
use geo_types::{point, Triangle};

let a = Triangle::new((0.0, 0.0).into(), (10.0, 10.0).into(), (0.0, 5.0).into());
let b = Triangle::new((0.0, 0.0).into(), (10.01, 10.0).into(), (0.0, 5.0).into());

approx::abs_diff_eq!(a, b, epsilon=0.1);
approx::abs_diff_ne!(a, b, epsilon=0.001);
Source§

type Epsilon = T

Used for specifying relative comparisons.
Source§

fn default_epsilon() -> <Triangle<T> as AbsDiffEq>::Epsilon

The default tolerance to use when testing values that are close together. Read more
Source§

fn abs_diff_ne(&self, other: &Rhs, epsilon: Self::Epsilon) -> bool

The inverse of AbsDiffEq::abs_diff_eq.
Source§

impl<T> Area<T> for Triangle<T>
where T: CoordFloat,

Source§

fn signed_area(&self) -> T

Source§

fn unsigned_area(&self) -> T

Source§

impl<T> BoundingRect<T> for Triangle<T>
where T: CoordNum,

Source§

type Output = Rect<T>

Source§

fn bounding_rect(&self) -> Self::Output

Return the bounding rectangle of a geometry Read more
Source§

impl<T> Centroid for Triangle<T>
where T: GeoFloat,

Source§

fn centroid(&self) -> Self::Output

The Centroid of a Triangle is the mean of its Points

§Examples
use geo::Centroid;
use geo::{Triangle, coord, point};

let triangle = Triangle::new(
  coord!(x: 0.0f32, y: -1.0),
  coord!(x: 3.0, y: 0.0),
  coord!(x: 0.0, y: 1.0),
);

assert_eq!(
    point!(x: 1.0, y: 0.0),
    triangle.centroid(),
);
Source§

type Output = Point<T>

Source§

impl<T> ChamberlainDuquetteArea<T> for Triangle<T>
where T: CoordFloat,

Source§

impl<T> Clone for Triangle<T>
where T: Clone + CoordNum,

Source§

fn clone(&self) -> Triangle<T>

Returns a copy of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl<F: GeoFloat> ClosestPoint<F> for Triangle<F>

Source§

fn closest_point(&self, p: &Point<F>) -> Closest<F>

Find the closest point between self and p.
Source§

impl<T> Contains<Coord<T>> for Triangle<T>
where T: GeoNum,

Source§

fn contains(&self, coord: &Coord<T>) -> bool

Source§

impl<T> Contains<Geometry<T>> for Triangle<T>
where T: GeoFloat,

Source§

fn contains(&self, geometry: &Geometry<T>) -> bool

Source§

impl<T> Contains<GeometryCollection<T>> for Triangle<T>
where T: GeoFloat,

Source§

fn contains(&self, target: &GeometryCollection<T>) -> bool

Source§

impl<T> Contains<Line<T>> for Triangle<T>
where T: GeoFloat,

Source§

fn contains(&self, target: &Line<T>) -> bool

Source§

impl<T> Contains<LineString<T>> for Triangle<T>
where T: GeoFloat,

Source§

fn contains(&self, target: &LineString<T>) -> bool

Source§

impl<T> Contains<MultiLineString<T>> for Triangle<T>
where T: GeoFloat,

Source§

fn contains(&self, target: &MultiLineString<T>) -> bool

Source§

impl<T> Contains<MultiPoint<T>> for Triangle<T>
where T: GeoFloat,

Source§

fn contains(&self, target: &MultiPoint<T>) -> bool

Source§

impl<T> Contains<MultiPolygon<T>> for Triangle<T>
where T: GeoFloat,

Source§

fn contains(&self, target: &MultiPolygon<T>) -> bool

Source§

impl<T> Contains<Point<T>> for Triangle<T>
where T: GeoNum,

Source§

fn contains(&self, point: &Point<T>) -> bool

Source§

impl<T> Contains<Polygon<T>> for Triangle<T>
where T: GeoFloat,

Source§

fn contains(&self, target: &Polygon<T>) -> bool

Source§

impl<T> Contains<Rect<T>> for Triangle<T>
where T: GeoFloat,

Source§

fn contains(&self, target: &Rect<T>) -> bool

Source§

impl<F> Contains<Triangle<F>> for MultiPolygon<F>
where F: GeoFloat,

Source§

fn contains(&self, rhs: &Triangle<F>) -> bool

Source§

impl<T> Contains<Triangle<T>> for Geometry<T>
where T: GeoFloat,

Source§

fn contains(&self, triangle: &Triangle<T>) -> bool

Source§

impl<T> Contains<Triangle<T>> for GeometryCollection<T>
where T: GeoFloat,

Source§

fn contains(&self, target: &Triangle<T>) -> bool

Source§

impl<T> Contains<Triangle<T>> for Line<T>
where T: GeoFloat,

Source§

fn contains(&self, target: &Triangle<T>) -> bool

Source§

impl<T> Contains<Triangle<T>> for LineString<T>
where T: GeoFloat,

Source§

fn contains(&self, target: &Triangle<T>) -> bool

Source§

impl<T> Contains<Triangle<T>> for MultiLineString<T>
where T: GeoFloat,

Source§

fn contains(&self, target: &Triangle<T>) -> bool

Source§

impl<T> Contains<Triangle<T>> for MultiPoint<T>
where T: GeoFloat,

Source§

fn contains(&self, target: &Triangle<T>) -> bool

Source§

impl<T> Contains<Triangle<T>> for Point<T>
where T: CoordNum,

Source§

fn contains(&self, triangle: &Triangle<T>) -> bool

Source§

impl<T> Contains<Triangle<T>> for Polygon<T>
where T: GeoFloat,

Source§

fn contains(&self, target: &Triangle<T>) -> bool

Source§

impl<T> Contains<Triangle<T>> for Rect<T>
where T: GeoFloat,

Source§

fn contains(&self, target: &Triangle<T>) -> bool

Source§

impl<T> Contains for Triangle<T>
where T: GeoFloat,

Source§

fn contains(&self, target: &Triangle<T>) -> bool

Source§

impl<T> CoordinatePosition for Triangle<T>
where T: GeoNum,

Source§

type Scalar = T

Source§

fn calculate_coordinate_position( &self, coord: &Coord<T>, is_inside: &mut bool, boundary_count: &mut usize, )

Source§

fn coordinate_position(&self, coord: &Coord<Self::Scalar>) -> CoordPos

Source§

impl<'a, T: CoordNum + 'a> CoordsIter<'a> for Triangle<T>

Source§

fn coords_count(&'a self) -> usize

Return the number of coordinates in the Triangle.

Source§

type Iter = Chain<Chain<Once<Coord<T>>, Once<Coord<T>>>, Once<Coord<T>>>

Source§

type ExteriorIter = <Triangle<T> as CoordsIter<'a>>::Iter

Source§

type Scalar = T

Source§

fn coords_iter(&'a self) -> Self::Iter

Iterate over all exterior and (if any) interior coordinates of a geometry. Read more
Source§

fn exterior_coords_iter(&'a self) -> Self::ExteriorIter

Iterate over all exterior coordinates of a geometry. Read more
Source§

impl<T> Debug for Triangle<T>
where T: CoordNum,

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
Source§

impl<T> Densify<T> for Triangle<T>

Source§

type Output = Polygon<T>

Source§

fn densify(&self, max_distance: T) -> Self::Output

Source§

impl<T> EuclideanDistance<T, Point<T>> for Triangle<T>
where T: GeoFloat,

Source§

fn euclidean_distance(&self, point: &Point<T>) -> T

Returns the distance between two geometries Read more
Source§

impl<IC, T> From<[IC; 3]> for Triangle<T>
where IC: Into<Coord<T>> + Copy, T: CoordNum,

Source§

fn from(array: [IC; 3]) -> Triangle<T>

Converts to this type from the input type.
Source§

impl<T> From<Triangle<T>> for Geometry<T>
where T: CoordNum,

Source§

fn from(x: Triangle<T>) -> Geometry<T>

Converts to this type from the input type.
Source§

impl<T> From<Triangle<T>> for Polygon<T>
where T: CoordNum,

Source§

fn from(t: Triangle<T>) -> Polygon<T>

Converts to this type from the input type.
Source§

impl GeodesicArea<f64> for Triangle

Source§

fn geodesic_perimeter(&self) -> f64

Determine the perimeter of a geometry on an ellipsoidal model of the earth. Read more
Source§

fn geodesic_area_signed(&self) -> f64

Determine the area of a geometry on an ellipsoidal model of the earth. Read more
Source§

fn geodesic_area_unsigned(&self) -> f64

Determine the area of a geometry on an ellipsoidal model of the earth. Supports very large geometries that cover a significant portion of the earth. Read more
Source§

fn geodesic_perimeter_area_signed(&self) -> (f64, f64)

Determine the perimeter and area of a geometry on an ellipsoidal model of the earth, all in one operation. Read more
Source§

fn geodesic_perimeter_area_unsigned(&self) -> (f64, f64)

Determine the perimeter and area of a geometry on an ellipsoidal model of the earth, all in one operation. Supports very large geometries that cover a significant portion of the earth. Read more
Source§

impl<C: GeoNum> HasDimensions for Triangle<C>

Source§

fn is_empty(&self) -> bool

Some geometries, like a MultiPoint, can have zero coordinates - we call these empty. Read more
Source§

fn dimensions(&self) -> Dimensions

The dimensions of some geometries are fixed, e.g. a Point always has 0 dimensions. However for others, the dimensionality depends on the specific geometry instance - for example typical Rects are 2-dimensional, but it’s possible to create degenerate Rects which have either 1 or 0 dimensions. Read more
Source§

fn boundary_dimensions(&self) -> Dimensions

The dimensions of the Geometry’s boundary, as used by OGC-SFA. Read more
Source§

impl<T> Hash for Triangle<T>
where T: Hash + CoordNum,

Source§

fn hash<__H>(&self, state: &mut __H)
where __H: Hasher,

Feeds this value into the given Hasher. Read more
1.3.0 · Source§

fn hash_slice<H>(data: &[Self], state: &mut H)
where H: Hasher, Self: Sized,

Feeds a slice of this type into the given Hasher. Read more
Source§

impl<T> InteriorPoint for Triangle<T>
where T: GeoFloat,

Source§

type Output = Point<T>

Source§

fn interior_point(&self) -> Self::Output

Calculates a representative point inside the Geometry Read more
Source§

impl<T, G> Intersects<G> for Triangle<T>
where T: CoordNum, Polygon<T>: Intersects<G>,

Source§

fn intersects(&self, rhs: &G) -> bool

Source§

impl<T> Intersects<Triangle<T>> for Coord<T>
where Triangle<T>: Intersects<Coord<T>>, T: CoordNum,

Source§

fn intersects(&self, rhs: &Triangle<T>) -> bool

Source§

impl<T> Intersects<Triangle<T>> for Line<T>
where Triangle<T>: Intersects<Line<T>>, T: CoordNum,

Source§

fn intersects(&self, rhs: &Triangle<T>) -> bool

Source§

impl<T> Intersects<Triangle<T>> for Polygon<T>
where Triangle<T>: Intersects<Polygon<T>>, T: CoordNum,

Source§

fn intersects(&self, rhs: &Triangle<T>) -> bool

Source§

impl<T> Intersects<Triangle<T>> for Rect<T>
where Triangle<T>: Intersects<Rect<T>>, T: CoordNum,

Source§

fn intersects(&self, rhs: &Triangle<T>) -> bool

Source§

impl<'a, T: CoordNum + 'a> LinesIter<'a> for Triangle<T>

Source§

type Scalar = T

Source§

type Iter = <[Line<<Triangle<T> as LinesIter<'a>>::Scalar>; 3] as IntoIterator>::IntoIter

Source§

fn lines_iter(&'a self) -> Self::Iter

Iterate over all exterior and (if any) interior lines of a geometry. Read more
Source§

impl<T: CoordNum, NT: CoordNum> MapCoords<T, NT> for Triangle<T>

Source§

type Output = Triangle<NT>

Source§

fn map_coords( &self, func: impl Fn(Coord<T>) -> Coord<NT> + Copy, ) -> Self::Output

Apply a function to all the coordinates in a geometric object, returning a new object. Read more
Source§

fn try_map_coords<E>( &self, func: impl Fn(Coord<T>) -> Result<Coord<NT>, E>, ) -> Result<Self::Output, E>

Map a fallible function over all the coordinates in a geometry, returning a Result Read more
Source§

impl<T: CoordNum> MapCoordsInPlace<T> for Triangle<T>

Source§

fn map_coords_in_place(&mut self, func: impl Fn(Coord<T>) -> Coord<T>)

Apply a function to all the coordinates in a geometric object, in place Read more
Source§

fn try_map_coords_in_place<E>( &mut self, func: impl Fn(Coord<T>) -> Result<Coord<T>, E>, ) -> Result<(), E>

Map a fallible function over all the coordinates in a geometry, in place, returning a Result. Read more
Source§

impl<T: CoordNum> MapCoordsInplace<T> for Triangle<T>

Source§

fn map_coords_inplace(&mut self, func: impl Fn((T, T)) -> (T, T) + Copy)
where T: CoordNum,

👎Deprecated since 0.21.0: use MapCoordsInPlace::map_coords_in_place instead which takes a Coord instead of an (x,y) tuple

Apply a function to all the coordinates in a geometric object, in place

§Examples
#[allow(deprecated)]
use geo::MapCoordsInplace;
use geo::Point;
use approx::assert_relative_eq;

let mut p = Point::new(10., 20.);
#[allow(deprecated)]
p.map_coords_inplace(|(x, y)| (x + 1000., y * 2.));

assert_relative_eq!(p, Point::new(1010., 40.), epsilon = 1e-6);
Source§

impl<T> PartialEq for Triangle<T>
where T: PartialEq + CoordNum,

Source§

fn eq(&self, other: &Triangle<T>) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Source§

impl<T> RTreeObject for Triangle<T>
where T: Float + RTreeNum,

Source§

type Envelope = AABB<Point<T>>

The object’s envelope type. Usually, AABB will be the right choice. This type also defines the object’s dimensionality.
Source§

fn envelope(&self) -> <Triangle<T> as RTreeObject>::Envelope

Returns the object’s envelope. Read more
Source§

impl<F: GeoFloat> Relate<F, GeometryCollection<F>> for Triangle<F>

Source§

impl<F: GeoFloat> Relate<F, Line<F>> for Triangle<F>

Source§

fn relate(&self, other: &Line<F>) -> IntersectionMatrix

Source§

impl<F: GeoFloat> Relate<F, LineString<F>> for Triangle<F>

Source§

impl<F: GeoFloat> Relate<F, MultiLineString<F>> for Triangle<F>

Source§

impl<F: GeoFloat> Relate<F, MultiPoint<F>> for Triangle<F>

Source§

impl<F: GeoFloat> Relate<F, MultiPolygon<F>> for Triangle<F>

Source§

impl<F: GeoFloat> Relate<F, Point<F>> for Triangle<F>

Source§

fn relate(&self, other: &Point<F>) -> IntersectionMatrix

Source§

impl<F: GeoFloat> Relate<F, Polygon<F>> for Triangle<F>

Source§

fn relate(&self, other: &Polygon<F>) -> IntersectionMatrix

Source§

impl<F: GeoFloat> Relate<F, Rect<F>> for Triangle<F>

Source§

fn relate(&self, other: &Rect<F>) -> IntersectionMatrix

Source§

impl<F: GeoFloat> Relate<F, Triangle<F>> for GeometryCollection<F>

Source§

fn relate(&self, other: &Triangle<F>) -> IntersectionMatrix

Source§

impl<F: GeoFloat> Relate<F, Triangle<F>> for Line<F>

Source§

fn relate(&self, other: &Triangle<F>) -> IntersectionMatrix

Source§

impl<F: GeoFloat> Relate<F, Triangle<F>> for LineString<F>

Source§

fn relate(&self, other: &Triangle<F>) -> IntersectionMatrix

Source§

impl<F: GeoFloat> Relate<F, Triangle<F>> for MultiLineString<F>

Source§

fn relate(&self, other: &Triangle<F>) -> IntersectionMatrix

Source§

impl<F: GeoFloat> Relate<F, Triangle<F>> for MultiPoint<F>

Source§

fn relate(&self, other: &Triangle<F>) -> IntersectionMatrix

Source§

impl<F: GeoFloat> Relate<F, Triangle<F>> for MultiPolygon<F>

Source§

fn relate(&self, other: &Triangle<F>) -> IntersectionMatrix

Source§

impl<F: GeoFloat> Relate<F, Triangle<F>> for Point<F>

Source§

fn relate(&self, other: &Triangle<F>) -> IntersectionMatrix

Source§

impl<F: GeoFloat> Relate<F, Triangle<F>> for Polygon<F>

Source§

fn relate(&self, other: &Triangle<F>) -> IntersectionMatrix

Source§

impl<F: GeoFloat> Relate<F, Triangle<F>> for Rect<F>

Source§

fn relate(&self, other: &Triangle<F>) -> IntersectionMatrix

Source§

impl<F: GeoFloat> Relate<F, Triangle<F>> for Triangle<F>

Source§

fn relate(&self, other: &Triangle<F>) -> IntersectionMatrix

Source§

impl<T> RelativeEq for Triangle<T>
where T: CoordNum + RelativeEq<Epsilon = T>,

Source§

fn relative_eq( &self, other: &Triangle<T>, epsilon: <Triangle<T> as AbsDiffEq>::Epsilon, max_relative: <Triangle<T> as AbsDiffEq>::Epsilon, ) -> bool

Equality assertion within a relative limit.

§Examples
use geo_types::{point, Triangle};

let a = Triangle::new((0.0, 0.0).into(), (10.0, 10.0).into(), (0.0, 5.0).into());
let b = Triangle::new((0.0, 0.0).into(), (10.01, 10.0).into(), (0.0, 5.0).into());

approx::assert_relative_eq!(a, b, max_relative=0.1);
approx::assert_relative_ne!(a, b, max_relative=0.0001);
Source§

fn default_max_relative() -> <Triangle<T> as AbsDiffEq>::Epsilon

The default relative tolerance for testing values that are far-apart. Read more
Source§

fn relative_ne( &self, other: &Rhs, epsilon: Self::Epsilon, max_relative: Self::Epsilon, ) -> bool

The inverse of RelativeEq::relative_eq.
Source§

impl<T> RemoveRepeatedPoints<T> for Triangle<T>

Source§

fn remove_repeated_points(&self) -> Self

Create a new geometry with (consecutive) repeated points removed.
Source§

fn remove_repeated_points_mut(&mut self)

Remove (consecutive) repeated points inplace.
Source§

impl<T> TryFrom<Geometry<T>> for Triangle<T>
where T: CoordNum,

Convert a Geometry enum into its inner type.

Fails if the enum case does not match the type you are trying to convert it to.

Source§

type Error = Error

The type returned in the event of a conversion error.
Source§

fn try_from( geom: Geometry<T>, ) -> Result<Triangle<T>, <Triangle<T> as TryFrom<Geometry<T>>>::Error>

Performs the conversion.
Source§

impl<T: CoordNum, NT: CoordNum, E> TryMapCoords<T, NT, E> for Triangle<T>

Source§

type Output = Triangle<NT>

👎Deprecated since 0.21.0: use MapCoords::try_map_coords which takes a Coord instead of an (x,y) tuple
Source§

fn try_map_coords( &self, func: impl Fn((T, T)) -> Result<(NT, NT), E> + Copy, ) -> Result<Self::Output, E>

👎Deprecated since 0.21.0: use MapCoords::try_map_coords which takes a Coord instead of an (x,y) tuple
Map a fallible function over all the coordinates in a geometry, returning a Result Read more
Source§

impl<T: CoordNum, E> TryMapCoordsInplace<T, E> for Triangle<T>

Source§

fn try_map_coords_inplace( &mut self, func: impl Fn((T, T)) -> Result<(T, T), E>, ) -> Result<(), E>

👎Deprecated since 0.21.0: use MapCoordsInPlace::try_map_coords_in_place which takes a Coord instead of an (x,y) tuple
Map a fallible function over all the coordinates in a geometry, in place, returning a Result. Read more
Source§

impl<T> UlpsEq for Triangle<T>
where T: CoordNum + UlpsEq<Epsilon = T>,

Source§

fn default_max_ulps() -> u32

The default ULPs to tolerate when testing values that are far-apart. Read more
Source§

fn ulps_eq( &self, other: &Triangle<T>, epsilon: <Triangle<T> as AbsDiffEq>::Epsilon, max_ulps: u32, ) -> bool

A test for equality that uses units in the last place (ULP) if the values are far apart.
Source§

fn ulps_ne(&self, other: &Rhs, epsilon: Self::Epsilon, max_ulps: u32) -> bool

The inverse of UlpsEq::ulps_eq.
Source§

impl<T> Copy for Triangle<T>
where T: Copy + CoordNum,

Source§

impl<T> Eq for Triangle<T>
where T: Eq + CoordNum,

Source§

impl<T> StructuralPartialEq for Triangle<T>
where T: CoordNum,

Auto Trait Implementations§

§

impl<T> Freeze for Triangle<T>
where T: Freeze,

§

impl<T> RefUnwindSafe for Triangle<T>
where T: RefUnwindSafe,

§

impl<T> Send for Triangle<T>
where T: Send,

§

impl<T> Sync for Triangle<T>
where T: Sync,

§

impl<T> Unpin for Triangle<T>
where T: Unpin,

§

impl<T> UnwindSafe for Triangle<T>
where T: UnwindSafe,

Blanket Implementations§

Source§

impl<T, M> AffineOps<T> for M
where T: CoordNum, M: MapCoordsInPlace<T> + MapCoords<T, T, Output = M>,

Source§

fn affine_transform(&self, transform: &AffineTransform<T>) -> M

Apply transform immutably, outputting a new geometry.
Source§

fn affine_transform_mut(&mut self, transform: &AffineTransform<T>)

Apply transform to mutate self.
Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dest: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dest. Read more
Source§

impl<G, T, U> Convert<T, U> for G
where T: CoordNum, U: CoordNum + From<T>, G: MapCoords<T, U>,

Source§

type Output = <G as MapCoords<T, U>>::Output

Source§

fn convert(&self) -> <G as Convert<T, U>>::Output

Source§

impl<'a, T, G> ConvexHull<'a, T> for G
where T: GeoNum, G: CoordsIter<'a, Scalar = T>,

Source§

type Scalar = T

Source§

fn convex_hull(&'a self) -> Polygon<T>

Source§

impl<'a, T, G> Extremes<'a, T> for G
where G: CoordsIter<'a, Scalar = T>, T: CoordNum,

Source§

fn extremes(&'a self) -> Option<Outcome<T>>

Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<'a, T, G> MinimumRotatedRect<'a, T> for G
where T: CoordFloat + GeoFloat + GeoNum, G: CoordsIter<'a, Scalar = T>,

Source§

impl<G, IP, IR, T> Rotate<T> for G
where T: CoordFloat, IP: Into<Option<Point<T>>>, IR: Into<Option<Rect<T>>>, G: Clone + Centroid<Output = IP> + BoundingRect<T, Output = IR> + AffineOps<T>,

Source§

fn rotate_around_centroid(&self, degrees: T) -> G

Rotate a geometry around its centroid by an angle, in degrees Read more
Source§

fn rotate_around_centroid_mut(&mut self, degrees: T)

Mutable version of Self::rotate_around_centroid
Source§

fn rotate_around_center(&self, degrees: T) -> G

Rotate a geometry around the center of its bounding box by an angle, in degrees. Read more
Source§

fn rotate_around_center_mut(&mut self, degrees: T)

Mutable version of Self::rotate_around_center
Source§

fn rotate_around_point(&self, degrees: T, point: Point<T>) -> G

Rotate a Geometry around an arbitrary point by an angle, given in degrees Read more
Source§

fn rotate_around_point_mut(&mut self, degrees: T, point: Point<T>)

Mutable version of Self::rotate_around_point
Source§

impl<T, IR, G> Scale<T> for G
where T: CoordFloat, IR: Into<Option<Rect<T>>>, G: Clone + AffineOps<T> + BoundingRect<T, Output = IR>,

Source§

fn scale(&self, scale_factor: T) -> G

Scale a geometry from it’s bounding box center. Read more
Source§

fn scale_mut(&mut self, scale_factor: T)

Mutable version of scale
Source§

fn scale_xy(&self, x_factor: T, y_factor: T) -> G

Scale a geometry from it’s bounding box center, using different values for x_factor and y_factor to distort the geometry’s aspect ratio. Read more
Source§

fn scale_xy_mut(&mut self, x_factor: T, y_factor: T)

Mutable version of scale_xy.
Source§

fn scale_around_point( &self, x_factor: T, y_factor: T, origin: impl Into<Coord<T>>, ) -> G

Scale a geometry around a point of origin. Read more
Source§

fn scale_around_point_mut( &mut self, x_factor: T, y_factor: T, origin: impl Into<Coord<T>>, )

Mutable version of scale_around_point.
Source§

impl<T, IR, G> Skew<T> for G
where T: CoordFloat, IR: Into<Option<Rect<T>>>, G: Clone + AffineOps<T> + BoundingRect<T, Output = IR>,

Source§

fn skew(&self, degrees: T) -> G

An affine transformation which skews a geometry, sheared by a uniform angle along the x and y dimensions. Read more
Source§

fn skew_mut(&mut self, degrees: T)

Mutable version of skew.
Source§

fn skew_xy(&self, degrees_x: T, degrees_y: T) -> G

An affine transformation which skews a geometry, sheared by an angle along the x and y dimensions. Read more
Source§

fn skew_xy_mut(&mut self, degrees_x: T, degrees_y: T)

Mutable version of skew_xy.
Source§

fn skew_around_point(&self, xs: T, ys: T, origin: impl Into<Coord<T>>) -> G

An affine transformation which skews a geometry around a point of origin, sheared by an angle along the x and y dimensions. Read more
Source§

fn skew_around_point_mut(&mut self, xs: T, ys: T, origin: impl Into<Coord<T>>)

Mutable version of skew_around_point.
Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T, G> Translate<T> for G
where T: CoordNum, G: AffineOps<T>,

Source§

fn translate(&self, x_offset: T, y_offset: T) -> G

Translate a Geometry along its axes by the given offsets Read more
Source§

fn translate_mut(&mut self, x_offset: T, y_offset: T)

Translate a Geometry along its axes, but in place.
Source§

fn translate_in_place(&mut self, x_offset: T, y_offset: T)

Source§

fn translate_inplace(&mut self, x_offset: T, y_offset: T)

Source§

impl<G, T, U> TryConvert<T, U> for G
where T: CoordNum, U: CoordNum + TryFrom<T>, G: MapCoords<T, U>,

Source§

type Output = Result<<G as MapCoords<T, U>>::Output, <U as TryFrom<T>>::Error>

Source§

fn try_convert(&self) -> <G as TryConvert<T, U>>::Output

Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<G1, G2> Within<G2> for G1
where G2: Contains<G1>,

Source§

fn is_within(&self, b: &G2) -> bool