rstar/algorithm/
intersection_iterator.rs1use crate::node::ParentNode;
2use crate::Envelope;
3use crate::RTreeNode;
4use crate::RTreeNode::*;
5use crate::RTreeObject;
6
7use alloc::vec::Vec;
8
9#[cfg(doc)]
10use crate::RTree;
11
12pub struct IntersectionIterator<'a, T, U = T>
14where
15 T: RTreeObject,
16 U: RTreeObject,
17{
18 todo_list: Vec<(&'a RTreeNode<T>, &'a RTreeNode<U>)>,
19}
20
21impl<'a, T, U> IntersectionIterator<'a, T, U>
22where
23 T: RTreeObject,
24 U: RTreeObject<Envelope = T::Envelope>,
25{
26 pub(crate) fn new(root1: &'a ParentNode<T>, root2: &'a ParentNode<U>) -> Self {
27 let mut intersections = IntersectionIterator {
28 todo_list: Vec::new(),
29 };
30 intersections.add_intersecting_children(root1, root2);
31 intersections
32 }
33
34 fn push_if_intersecting(&mut self, node1: &'a RTreeNode<T>, node2: &'a RTreeNode<U>) {
35 if node1.envelope().intersects(&node2.envelope()) {
36 self.todo_list.push((node1, node2));
37 }
38 }
39
40 fn add_intersecting_children(
41 &mut self,
42 parent1: &'a ParentNode<T>,
43 parent2: &'a ParentNode<U>,
44 ) {
45 if !parent1.envelope().intersects(&parent2.envelope()) {
46 return;
47 }
48 let children1 = parent1
49 .children()
50 .iter()
51 .filter(|c1| c1.envelope().intersects(&parent2.envelope()));
52
53 for child1 in children1 {
54 let children2 = parent2
55 .children()
56 .iter()
57 .filter(|c2| c2.envelope().intersects(&parent1.envelope()));
58
59 for child2 in children2 {
60 self.push_if_intersecting(child1, child2);
61 }
62 }
63 }
64}
65
66impl<'a, T, U> Iterator for IntersectionIterator<'a, T, U>
67where
68 T: RTreeObject,
69 U: RTreeObject<Envelope = T::Envelope>,
70{
71 type Item = (&'a T, &'a U);
72
73 fn next(&mut self) -> Option<Self::Item> {
74 while let Some(next) = self.todo_list.pop() {
75 match next {
76 (Leaf(t1), Leaf(t2)) => return Some((t1, t2)),
77 (leaf @ Leaf(_), Parent(p)) => {
78 p.children()
79 .iter()
80 .for_each(|c| self.push_if_intersecting(leaf, c));
81 }
82 (Parent(p), leaf @ Leaf(_)) => {
83 p.children()
84 .iter()
85 .for_each(|c| self.push_if_intersecting(c, leaf));
86 }
87 (Parent(p1), Parent(p2)) => {
88 self.add_intersecting_children(p1, p2);
89 }
90 }
91 }
92 None
93 }
94}
95
96#[cfg(test)]
97mod test {
98 use crate::test_utilities::*;
99 use crate::{Envelope, RTree, RTreeObject};
100
101 #[test]
102 fn test_intersection_between_trees() {
103 let rectangles1 = create_random_rectangles(100, SEED_1);
104 let rectangles2 = create_random_rectangles(42, SEED_2);
105
106 let mut intersections_brute_force = Vec::new();
107 for rectangle1 in &rectangles1 {
108 for rectangle2 in &rectangles2 {
109 if rectangle1.envelope().intersects(&rectangle2.envelope()) {
110 intersections_brute_force.push((rectangle1, rectangle2));
111 }
112 }
113 }
114
115 let tree1 = RTree::bulk_load(rectangles1.clone());
116 let tree2 = RTree::bulk_load(rectangles2.clone());
117 let mut intersections_from_trees = tree1
118 .intersection_candidates_with_other_tree(&tree2)
119 .collect::<Vec<_>>();
120
121 intersections_brute_force.sort_by(|a, b| a.partial_cmp(b).unwrap());
122 intersections_from_trees.sort_by(|a, b| a.partial_cmp(b).unwrap());
123 assert_eq!(intersections_brute_force, intersections_from_trees);
124 }
125
126 #[test]
127 fn test_trivial_intersections() {
128 let points1 = create_random_points(1000, SEED_1);
129 let points2 = create_random_points(2000, SEED_2);
130 let tree1 = RTree::bulk_load(points1);
131 let tree2 = RTree::bulk_load(points2);
132
133 assert_eq!(
134 tree1
135 .intersection_candidates_with_other_tree(&tree2)
136 .count(),
137 0
138 );
139 assert_eq!(
140 tree1
141 .intersection_candidates_with_other_tree(&tree1)
142 .count(),
143 tree1.size()
144 );
145 }
146}