jiff/error.rs
1use crate::{shared::util::error::Error as SharedError, util::sync::Arc};
2
3/// Creates a new ad hoc error with no causal chain.
4///
5/// This accepts the same arguments as the `format!` macro. The error it
6/// creates is just a wrapper around the string created by `format!`.
7macro_rules! err {
8 ($($tt:tt)*) => {{
9 crate::error::Error::adhoc_from_args(format_args!($($tt)*))
10 }}
11}
12
13pub(crate) use err;
14
15/// An error that can occur in this crate.
16///
17/// The most common type of error is a result of overflow. But other errors
18/// exist as well:
19///
20/// * Time zone database lookup failure.
21/// * Configuration problem. (For example, trying to round a span with calendar
22/// units without providing a relative datetime.)
23/// * An I/O error as a result of trying to open a time zone database from a
24/// directory via
25/// [`TimeZoneDatabase::from_dir`](crate::tz::TimeZoneDatabase::from_dir).
26/// * Parse errors.
27///
28/// # Introspection is limited
29///
30/// Other than implementing the [`std::error::Error`] trait when the
31/// `std` feature is enabled, the [`core::fmt::Debug`] trait and the
32/// [`core::fmt::Display`] trait, this error type currently provides no
33/// introspection capabilities.
34///
35/// # Design
36///
37/// This crate follows the "One True God Error Type Pattern," where only one
38/// error type exists for a variety of different operations. This design was
39/// chosen after attempting to provide finer grained error types. But finer
40/// grained error types proved difficult in the face of composition.
41///
42/// More about this design choice can be found in a GitHub issue
43/// [about error types].
44///
45/// [about error types]: https://github.com/BurntSushi/jiff/issues/8
46#[derive(Clone)]
47pub struct Error {
48 /// The internal representation of an error.
49 ///
50 /// This is in an `Arc` to make an `Error` cloneable. It could otherwise
51 /// be automatically cloneable, but it embeds a `std::io::Error` when the
52 /// `std` feature is enabled, which isn't cloneable.
53 ///
54 /// This also makes clones cheap. And it also make the size of error equal
55 /// to one word (although a `Box` would achieve that last goal). This is
56 /// why we put the `Arc` here instead of on `std::io::Error` directly.
57 inner: Option<Arc<ErrorInner>>,
58}
59
60#[derive(Debug)]
61#[cfg_attr(not(feature = "alloc"), derive(Clone))]
62struct ErrorInner {
63 kind: ErrorKind,
64 #[cfg(feature = "alloc")]
65 cause: Option<Error>,
66}
67
68/// The underlying kind of a [`Error`].
69#[derive(Debug)]
70#[cfg_attr(not(feature = "alloc"), derive(Clone))]
71enum ErrorKind {
72 /// An ad hoc error that is constructed from anything that implements
73 /// the `core::fmt::Display` trait.
74 ///
75 /// In theory we try to avoid these, but they tend to be awfully
76 /// convenient. In practice, we use them a lot, and only use a structured
77 /// representation when a lot of different error cases fit neatly into a
78 /// structure (like range errors).
79 Adhoc(AdhocError),
80 /// An error that occurs when a number is not within its allowed range.
81 ///
82 /// This can occur directly as a result of a number provided by the caller
83 /// of a public API, or as a result of an operation on a number that
84 /// results in it being out of range.
85 Range(RangeError),
86 /// An error that occurs within `jiff::shared`.
87 ///
88 /// It has its own error type to avoid bringing in this much bigger error
89 /// type.
90 Shared(SharedError),
91 /// An error associated with a file path.
92 ///
93 /// This is generally expected to always have a cause attached to it
94 /// explaining what went wrong. The error variant is just a path to make
95 /// it composable with other error types.
96 ///
97 /// The cause is typically `Adhoc` or `IO`.
98 ///
99 /// When `std` is not enabled, this variant can never be constructed.
100 #[allow(dead_code)] // not used in some feature configs
101 FilePath(FilePathError),
102 /// An error that occurs when interacting with the file system.
103 ///
104 /// This is effectively a wrapper around `std::io::Error` coupled with a
105 /// `std::path::PathBuf`.
106 ///
107 /// When `std` is not enabled, this variant can never be constructed.
108 #[allow(dead_code)] // not used in some feature configs
109 IO(IOError),
110}
111
112impl Error {
113 /// Creates a new error value from `core::fmt::Arguments`.
114 ///
115 /// It is expected to use [`format_args!`](format_args) from
116 /// Rust's standard library (available in `core`) to create a
117 /// `core::fmt::Arguments`.
118 ///
119 /// Callers should generally use their own error types. But in some
120 /// circumstances, it can be convenient to manufacture a Jiff error value
121 /// specifically.
122 ///
123 /// # Example
124 ///
125 /// ```
126 /// use jiff::Error;
127 ///
128 /// let err = Error::from_args(format_args!("something failed"));
129 /// assert_eq!(err.to_string(), "something failed");
130 /// ```
131 pub fn from_args<'a>(message: core::fmt::Arguments<'a>) -> Error {
132 Error::from(ErrorKind::Adhoc(AdhocError::from_args(message)))
133 }
134
135 #[inline(never)]
136 #[cold]
137 fn context_impl(self, consequent: Error) -> Error {
138 #[cfg(feature = "alloc")]
139 {
140 let mut err = consequent;
141 if err.inner.is_none() {
142 err = err!("unknown jiff error");
143 }
144 let inner = err.inner.as_mut().unwrap();
145 assert!(
146 inner.cause.is_none(),
147 "cause of consequence must be `None`"
148 );
149 // OK because we just created this error so the Arc
150 // has one reference.
151 Arc::get_mut(inner).unwrap().cause = Some(self);
152 err
153 }
154 #[cfg(not(feature = "alloc"))]
155 {
156 // We just completely drop `self`. :-(
157 consequent
158 }
159 }
160}
161
162impl Error {
163 /// Creates a new "ad hoc" error value.
164 ///
165 /// An ad hoc error value is just an opaque string.
166 #[cfg(feature = "alloc")]
167 #[inline(never)]
168 #[cold]
169 pub(crate) fn adhoc<'a>(message: impl core::fmt::Display + 'a) -> Error {
170 Error::from(ErrorKind::Adhoc(AdhocError::from_display(message)))
171 }
172
173 /// Like `Error::adhoc`, but accepts a `core::fmt::Arguments`.
174 ///
175 /// This is used with the `err!` macro so that we can thread a
176 /// `core::fmt::Arguments` down. This lets us extract a `&'static str`
177 /// from some messages in core-only mode and provide somewhat decent error
178 /// messages in some cases.
179 #[inline(never)]
180 #[cold]
181 pub(crate) fn adhoc_from_args<'a>(
182 message: core::fmt::Arguments<'a>,
183 ) -> Error {
184 Error::from(ErrorKind::Adhoc(AdhocError::from_args(message)))
185 }
186
187 /// Like `Error::adhoc`, but creates an error from a `String` directly.
188 ///
189 /// This exists to explicitly monomorphize a very common case.
190 #[cfg(feature = "alloc")]
191 #[inline(never)]
192 #[cold]
193 fn adhoc_from_string(message: alloc::string::String) -> Error {
194 Error::adhoc(message)
195 }
196
197 /// Like `Error::adhoc`, but creates an error from a `&'static str`
198 /// directly.
199 ///
200 /// This is useful in contexts where you know you have a `&'static str`,
201 /// and avoids relying on `alloc`-only routines like `Error::adhoc`.
202 #[inline(never)]
203 #[cold]
204 pub(crate) fn adhoc_from_static_str(message: &'static str) -> Error {
205 Error::from(ErrorKind::Adhoc(AdhocError::from_static_str(message)))
206 }
207
208 /// Creates a new error indicating that a `given` value is out of the
209 /// specified `min..=max` range. The given `what` label is used in the
210 /// error message as a human readable description of what exactly is out
211 /// of range. (e.g., "seconds")
212 #[inline(never)]
213 #[cold]
214 pub(crate) fn range(
215 what: &'static str,
216 given: impl Into<i128>,
217 min: impl Into<i128>,
218 max: impl Into<i128>,
219 ) -> Error {
220 Error::from(ErrorKind::Range(RangeError::new(what, given, min, max)))
221 }
222
223 /// Creates a new error from the special "shared" error type.
224 pub(crate) fn shared(err: SharedError) -> Error {
225 Error::from(ErrorKind::Shared(err))
226 }
227
228 /// A convenience constructor for building an I/O error.
229 ///
230 /// This returns an error that is just a simple wrapper around the
231 /// `std::io::Error` type. In general, callers should alwasys attach some
232 /// kind of context to this error (like a file path).
233 ///
234 /// This is only available when the `std` feature is enabled.
235 #[cfg(feature = "std")]
236 #[inline(never)]
237 #[cold]
238 pub(crate) fn io(err: std::io::Error) -> Error {
239 Error::from(ErrorKind::IO(IOError { err }))
240 }
241
242 /// Contextualizes this error by associating the given file path with it.
243 ///
244 /// This is a convenience routine for calling `Error::context` with a
245 /// `FilePathError`.
246 #[cfg(any(feature = "tzdb-zoneinfo", feature = "tzdb-concatenated"))]
247 #[inline(never)]
248 #[cold]
249 pub(crate) fn path(self, path: impl Into<std::path::PathBuf>) -> Error {
250 let err = Error::from(ErrorKind::FilePath(FilePathError {
251 path: path.into(),
252 }));
253 self.context(err)
254 }
255
256 /*
257 /// Creates a new "unknown" Jiff error.
258 ///
259 /// The benefit of this API is that it permits creating an `Error` in a
260 /// `const` context. But the error message quality is currently pretty
261 /// bad: it's just a generic "unknown jiff error" message.
262 ///
263 /// This could be improved to take a `&'static str`, but I believe this
264 /// will require pointer tagging in order to avoid increasing the size of
265 /// `Error`. (Which is important, because of how many perf sensitive
266 /// APIs return a `Result<T, Error>` in Jiff.
267 pub(crate) const fn unknown() -> Error {
268 Error { inner: None }
269 }
270 */
271}
272
273#[cfg(feature = "std")]
274impl std::error::Error for Error {}
275
276impl core::fmt::Display for Error {
277 fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
278 #[cfg(feature = "alloc")]
279 {
280 let mut err = self;
281 loop {
282 let Some(ref inner) = err.inner else {
283 write!(f, "unknown jiff error")?;
284 break;
285 };
286 write!(f, "{}", inner.kind)?;
287 err = match inner.cause.as_ref() {
288 None => break,
289 Some(err) => err,
290 };
291 write!(f, ": ")?;
292 }
293 Ok(())
294 }
295 #[cfg(not(feature = "alloc"))]
296 {
297 match self.inner {
298 None => write!(f, "unknown jiff error"),
299 Some(ref inner) => write!(f, "{}", inner.kind),
300 }
301 }
302 }
303}
304
305impl core::fmt::Debug for Error {
306 fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
307 if !f.alternate() {
308 core::fmt::Display::fmt(self, f)
309 } else {
310 let Some(ref inner) = self.inner else {
311 return f
312 .debug_struct("Error")
313 .field("kind", &"None")
314 .finish();
315 };
316 #[cfg(feature = "alloc")]
317 {
318 f.debug_struct("Error")
319 .field("kind", &inner.kind)
320 .field("cause", &inner.cause)
321 .finish()
322 }
323 #[cfg(not(feature = "alloc"))]
324 {
325 f.debug_struct("Error").field("kind", &inner.kind).finish()
326 }
327 }
328 }
329}
330
331impl core::fmt::Display for ErrorKind {
332 fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
333 match *self {
334 ErrorKind::Adhoc(ref msg) => msg.fmt(f),
335 ErrorKind::Range(ref err) => err.fmt(f),
336 ErrorKind::Shared(ref err) => err.fmt(f),
337 ErrorKind::FilePath(ref err) => err.fmt(f),
338 ErrorKind::IO(ref err) => err.fmt(f),
339 }
340 }
341}
342
343impl From<ErrorKind> for Error {
344 fn from(kind: ErrorKind) -> Error {
345 #[cfg(feature = "alloc")]
346 {
347 Error { inner: Some(Arc::new(ErrorInner { kind, cause: None })) }
348 }
349 #[cfg(not(feature = "alloc"))]
350 {
351 Error { inner: Some(Arc::new(ErrorInner { kind })) }
352 }
353 }
354}
355
356/// A generic error message.
357///
358/// This somewhat unfortunately represents most of the errors in Jiff. When I
359/// first started building Jiff, I had a goal of making every error structured.
360/// But this ended up being a ton of work, and I find it much easier and nicer
361/// for error messages to be embedded where they occur.
362#[cfg_attr(not(feature = "alloc"), derive(Clone))]
363struct AdhocError {
364 #[cfg(feature = "alloc")]
365 message: alloc::boxed::Box<str>,
366 #[cfg(not(feature = "alloc"))]
367 message: &'static str,
368}
369
370impl AdhocError {
371 #[cfg(feature = "alloc")]
372 fn from_display<'a>(message: impl core::fmt::Display + 'a) -> AdhocError {
373 use alloc::string::ToString;
374
375 let message = message.to_string().into_boxed_str();
376 AdhocError { message }
377 }
378
379 fn from_args<'a>(message: core::fmt::Arguments<'a>) -> AdhocError {
380 #[cfg(feature = "alloc")]
381 {
382 AdhocError::from_display(message)
383 }
384 #[cfg(not(feature = "alloc"))]
385 {
386 let message = message.as_str().unwrap_or(
387 "unknown Jiff error (better error messages require \
388 enabling the `alloc` feature for the `jiff` crate)",
389 );
390 AdhocError::from_static_str(message)
391 }
392 }
393
394 fn from_static_str(message: &'static str) -> AdhocError {
395 #[cfg(feature = "alloc")]
396 {
397 AdhocError::from_display(message)
398 }
399 #[cfg(not(feature = "alloc"))]
400 {
401 AdhocError { message }
402 }
403 }
404}
405
406#[cfg(feature = "std")]
407impl std::error::Error for AdhocError {}
408
409impl core::fmt::Display for AdhocError {
410 fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
411 core::fmt::Display::fmt(&self.message, f)
412 }
413}
414
415impl core::fmt::Debug for AdhocError {
416 fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
417 core::fmt::Debug::fmt(&self.message, f)
418 }
419}
420
421/// An error that occurs when an input value is out of bounds.
422///
423/// The error message produced by this type will include a name describing
424/// which input was out of bounds, the value given and its minimum and maximum
425/// allowed values.
426#[derive(Debug)]
427#[cfg_attr(not(feature = "alloc"), derive(Clone))]
428struct RangeError {
429 what: &'static str,
430 #[cfg(feature = "alloc")]
431 given: i128,
432 #[cfg(feature = "alloc")]
433 min: i128,
434 #[cfg(feature = "alloc")]
435 max: i128,
436}
437
438impl RangeError {
439 fn new(
440 what: &'static str,
441 _given: impl Into<i128>,
442 _min: impl Into<i128>,
443 _max: impl Into<i128>,
444 ) -> RangeError {
445 RangeError {
446 what,
447 #[cfg(feature = "alloc")]
448 given: _given.into(),
449 #[cfg(feature = "alloc")]
450 min: _min.into(),
451 #[cfg(feature = "alloc")]
452 max: _max.into(),
453 }
454 }
455}
456
457#[cfg(feature = "std")]
458impl std::error::Error for RangeError {}
459
460impl core::fmt::Display for RangeError {
461 fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
462 #[cfg(feature = "alloc")]
463 {
464 let RangeError { what, given, min, max } = *self;
465 write!(
466 f,
467 "parameter '{what}' with value {given} \
468 is not in the required range of {min}..={max}",
469 )
470 }
471 #[cfg(not(feature = "alloc"))]
472 {
473 let RangeError { what } = *self;
474 write!(f, "parameter '{what}' is not in the required range")
475 }
476 }
477}
478
479/// A `std::io::Error`.
480///
481/// This type is itself always available, even when the `std` feature is not
482/// enabled. When `std` is not enabled, a value of this type can never be
483/// constructed.
484///
485/// Otherwise, this type is a simple wrapper around `std::io::Error`. Its
486/// purpose is to encapsulate the conditional compilation based on the `std`
487/// feature.
488#[cfg_attr(not(feature = "alloc"), derive(Clone))]
489struct IOError {
490 #[cfg(feature = "std")]
491 err: std::io::Error,
492}
493
494#[cfg(feature = "std")]
495impl std::error::Error for IOError {}
496
497impl core::fmt::Display for IOError {
498 fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
499 #[cfg(feature = "std")]
500 {
501 write!(f, "{}", self.err)
502 }
503 #[cfg(not(feature = "std"))]
504 {
505 write!(f, "<BUG: SHOULD NOT EXIST>")
506 }
507 }
508}
509
510impl core::fmt::Debug for IOError {
511 fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
512 #[cfg(feature = "std")]
513 {
514 f.debug_struct("IOError").field("err", &self.err).finish()
515 }
516 #[cfg(not(feature = "std"))]
517 {
518 write!(f, "<BUG: SHOULD NOT EXIST>")
519 }
520 }
521}
522
523#[cfg(feature = "std")]
524impl From<std::io::Error> for IOError {
525 fn from(err: std::io::Error) -> IOError {
526 IOError { err }
527 }
528}
529
530#[cfg_attr(not(feature = "alloc"), derive(Clone))]
531struct FilePathError {
532 #[cfg(feature = "std")]
533 path: std::path::PathBuf,
534}
535
536#[cfg(feature = "std")]
537impl std::error::Error for FilePathError {}
538
539impl core::fmt::Display for FilePathError {
540 fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
541 #[cfg(feature = "std")]
542 {
543 write!(f, "{}", self.path.display())
544 }
545 #[cfg(not(feature = "std"))]
546 {
547 write!(f, "<BUG: SHOULD NOT EXIST>")
548 }
549 }
550}
551
552impl core::fmt::Debug for FilePathError {
553 fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
554 #[cfg(feature = "std")]
555 {
556 f.debug_struct("FilePathError").field("path", &self.path).finish()
557 }
558 #[cfg(not(feature = "std"))]
559 {
560 write!(f, "<BUG: SHOULD NOT EXIST>")
561 }
562 }
563}
564
565/// A simple trait to encapsulate automatic conversion to `Error`.
566///
567/// This trait basically exists to make `Error::context` work without needing
568/// to rely on public `From` impls. For example, without this trait, we might
569/// otherwise write `impl From<String> for Error`. But this would make it part
570/// of the public API. Which... maybe we should do, but at time of writing,
571/// I'm starting very conservative so that we can evolve errors in semver
572/// compatible ways.
573pub(crate) trait IntoError {
574 fn into_error(self) -> Error;
575}
576
577impl IntoError for Error {
578 #[inline(always)]
579 fn into_error(self) -> Error {
580 self
581 }
582}
583
584impl IntoError for &'static str {
585 #[inline(always)]
586 fn into_error(self) -> Error {
587 Error::adhoc_from_static_str(self)
588 }
589}
590
591#[cfg(feature = "alloc")]
592impl IntoError for alloc::string::String {
593 #[inline(always)]
594 fn into_error(self) -> Error {
595 Error::adhoc_from_string(self)
596 }
597}
598
599/// A trait for contextualizing error values.
600///
601/// This makes it easy to contextualize either `Error` or `Result<T, Error>`.
602/// Specifically, in the latter case, it absolves one of the need to call
603/// `map_err` everywhere one wants to add context to an error.
604///
605/// This trick was borrowed from `anyhow`.
606pub(crate) trait ErrorContext {
607 /// Contextualize the given consequent error with this (`self`) error as
608 /// the cause.
609 ///
610 /// This is equivalent to saying that "consequent is caused by self."
611 ///
612 /// Note that if an `Error` is given for `kind`, then this panics if it has
613 /// a cause. (Because the cause would otherwise be dropped. An error causal
614 /// chain is just a linked list, not a tree.)
615 fn context(self, consequent: impl IntoError) -> Self;
616
617 /// Like `context`, but hides error construction within a closure.
618 ///
619 /// This is useful if the creation of the consequent error is not otherwise
620 /// guarded and when error construction is potentially "costly" (i.e., it
621 /// allocates). The closure avoids paying the cost of contextual error
622 /// creation in the happy path.
623 ///
624 /// Usually this only makes sense to use on a `Result<T, Error>`, otherwise
625 /// the closure is just executed immediately anyway.
626 fn with_context<E: IntoError>(
627 self,
628 consequent: impl FnOnce() -> E,
629 ) -> Self;
630}
631
632impl ErrorContext for Error {
633 #[cfg_attr(feature = "perf-inline", inline(always))]
634 fn context(self, consequent: impl IntoError) -> Error {
635 self.context_impl(consequent.into_error())
636 }
637
638 #[cfg_attr(feature = "perf-inline", inline(always))]
639 fn with_context<E: IntoError>(
640 self,
641 consequent: impl FnOnce() -> E,
642 ) -> Error {
643 self.context_impl(consequent().into_error())
644 }
645}
646
647impl<T> ErrorContext for Result<T, Error> {
648 #[cfg_attr(feature = "perf-inline", inline(always))]
649 fn context(self, consequent: impl IntoError) -> Result<T, Error> {
650 self.map_err(|err| err.context_impl(consequent.into_error()))
651 }
652
653 #[cfg_attr(feature = "perf-inline", inline(always))]
654 fn with_context<E: IntoError>(
655 self,
656 consequent: impl FnOnce() -> E,
657 ) -> Result<T, Error> {
658 self.map_err(|err| err.context_impl(consequent().into_error()))
659 }
660}
661
662#[cfg(test)]
663mod tests {
664 use super::*;
665
666 // We test that our 'Error' type is the size we expect. This isn't an API
667 // guarantee, but if the size increases, we really want to make sure we
668 // decide to do that intentionally. So this should be a speed bump. And in
669 // general, we should not increase the size without a very good reason.
670 #[test]
671 fn error_size() {
672 let mut expected_size = core::mem::size_of::<usize>();
673 if !cfg!(feature = "alloc") {
674 // oooowwwwwwwwwwwch.
675 //
676 // Like, this is horrible, right? core-only environments are
677 // precisely the place where one want to keep things slim. But
678 // in core-only, I don't know of a way to introduce any sort of
679 // indirection in the library level without using a completely
680 // different API.
681 //
682 // This is what makes me doubt that core-only Jiff is actually
683 // useful. In what context are people using a huge library like
684 // Jiff but can't define a small little heap allocator?
685 //
686 // OK, this used to be `expected_size *= 10`, but I slimmed it down
687 // to x3. Still kinda sucks right? If we tried harder, I think we
688 // could probably slim this down more. And if we were willing to
689 // sacrifice error message quality even more (like, all the way),
690 // then we could make `Error` a zero sized type. Which might
691 // actually be the right trade-off for core-only, but I'll hold off
692 // until we have some real world use cases.
693 expected_size *= 3;
694 }
695 assert_eq!(expected_size, core::mem::size_of::<Error>());
696 }
697}