jiff/civil/time.rs
1use core::time::Duration as UnsignedDuration;
2
3use crate::{
4 civil::{Date, DateTime},
5 duration::{Duration, SDuration},
6 error::{err, Error, ErrorContext},
7 fmt::{
8 self,
9 temporal::{self, DEFAULT_DATETIME_PARSER},
10 },
11 shared::util::itime::{ITime, ITimeNanosecond, ITimeSecond},
12 util::{
13 rangeint::{self, Composite, RFrom, RInto, TryRFrom},
14 round::increment,
15 t::{
16 self, CivilDayNanosecond, CivilDaySecond, Hour, Microsecond,
17 Millisecond, Minute, Nanosecond, Second, SubsecNanosecond, C,
18 },
19 },
20 RoundMode, SignedDuration, Span, SpanRound, Unit, Zoned,
21};
22
23/// A representation of civil "wall clock" time.
24///
25/// Conceptually, a `Time` value corresponds to the typical hours and minutes
26/// that you might see on a clock. This type also contains the second and
27/// fractional subsecond (to nanosecond precision) associated with a time.
28///
29/// # Civil time
30///
31/// A `Time` value behaves as if it corresponds precisely to a single
32/// nanosecond within a day, where all days have `86,400` seconds. That is,
33/// any given `Time` value corresponds to a nanosecond in the inclusive range
34/// `[0, 86399999999999]`, where `0` corresponds to `00:00:00.000000000`
35/// ([`Time::MIN`]) and `86399999999999` corresponds to `23:59:59.999999999`
36/// ([`Time::MAX`]). Moreover, in civil time, all hours have the same number of
37/// minutes, all minutes have the same number of seconds and all seconds have
38/// the same number of nanoseconds.
39///
40/// # Parsing and printing
41///
42/// The `Time` type provides convenient trait implementations of
43/// [`std::str::FromStr`] and [`std::fmt::Display`]:
44///
45/// ```
46/// use jiff::civil::Time;
47///
48/// let t: Time = "15:22:45".parse()?;
49/// assert_eq!(t.to_string(), "15:22:45");
50///
51/// # Ok::<(), Box<dyn std::error::Error>>(())
52/// ```
53///
54/// A civil `Time` can also be parsed from something that _contains_ a
55/// time, but with perhaps other data (such as an offset or time zone):
56///
57/// ```
58/// use jiff::civil::Time;
59///
60/// let t: Time = "2024-06-19T15:22:45-04[America/New_York]".parse()?;
61/// assert_eq!(t.to_string(), "15:22:45");
62///
63/// # Ok::<(), Box<dyn std::error::Error>>(())
64/// ```
65///
66/// For more information on the specific format supported, see the
67/// [`fmt::temporal`](crate::fmt::temporal) module documentation.
68///
69/// # Default value
70///
71/// For convenience, this type implements the `Default` trait. Its default
72/// value is midnight. i.e., `00:00:00.000000000`.
73///
74/// # Leap seconds
75///
76/// Jiff does not support leap seconds. Jiff behaves as if they don't exist.
77/// The only exception is that if one parses a time with a second component
78/// of `60`, then it is automatically constrained to `59`:
79///
80/// ```
81/// use jiff::civil::{Time, time};
82///
83/// let t: Time = "23:59:60".parse()?;
84/// assert_eq!(t, time(23, 59, 59, 0));
85///
86/// # Ok::<(), Box<dyn std::error::Error>>(())
87/// ```
88///
89/// # Comparisons
90///
91/// The `Time` type provides both `Eq` and `Ord` trait implementations to
92/// facilitate easy comparisons. When a time `t1` occurs before a time `t2`,
93/// then `t1 < t2`. For example:
94///
95/// ```
96/// use jiff::civil::time;
97///
98/// let t1 = time(7, 30, 1, 0);
99/// let t2 = time(8, 10, 0, 0);
100/// assert!(t1 < t2);
101/// ```
102///
103/// As mentioned above, `Time` values are not associated with timezones, and
104/// thus transitions such as DST are not taken into account when comparing
105/// `Time` values.
106///
107/// # Arithmetic
108///
109/// This type provides routines for adding and subtracting spans of time, as
110/// well as computing the span of time between two `Time` values.
111///
112/// For adding or subtracting spans of time, one can use any of the following
113/// routines:
114///
115/// * [`Time::wrapping_add`] or [`Time::wrapping_sub`] for wrapping arithmetic.
116/// * [`Time::checked_add`] or [`Time::checked_sub`] for checked arithmetic.
117/// * [`Time::saturating_add`] or [`Time::saturating_sub`] for saturating
118/// arithmetic.
119///
120/// Additionally, wrapping arithmetic is available via the `Add` and `Sub`
121/// trait implementations:
122///
123/// ```
124/// use jiff::{civil::time, ToSpan};
125///
126/// let t = time(20, 10, 1, 0);
127/// let span = 1.hours().minutes(49).seconds(59);
128/// assert_eq!(t + span, time(22, 0, 0, 0));
129///
130/// // Overflow will result in wrap-around unless using checked
131/// // arithmetic explicitly.
132/// let t = time(23, 59, 59, 999_999_999);
133/// assert_eq!(time(0, 0, 0, 0), t + 1.nanoseconds());
134/// ```
135///
136/// Wrapping arithmetic is used by default because it corresponds to how clocks
137/// showing the time of day behave in practice.
138///
139/// One can compute the span of time between two times using either
140/// [`Time::until`] or [`Time::since`]. It's also possible to subtract two
141/// `Time` values directly via a `Sub` trait implementation:
142///
143/// ```
144/// use jiff::{civil::time, ToSpan};
145///
146/// let time1 = time(22, 0, 0, 0);
147/// let time2 = time(20, 10, 1, 0);
148/// assert_eq!(
149/// time1 - time2,
150/// 1.hours().minutes(49).seconds(59).fieldwise(),
151/// );
152/// ```
153///
154/// The `until` and `since` APIs are polymorphic and allow re-balancing and
155/// rounding the span returned. For example, the default largest unit is hours
156/// (as exemplified above), but we can ask for smaller units:
157///
158/// ```
159/// use jiff::{civil::time, ToSpan, Unit};
160///
161/// let time1 = time(23, 30, 0, 0);
162/// let time2 = time(7, 0, 0, 0);
163/// assert_eq!(
164/// time1.since((Unit::Minute, time2))?,
165/// 990.minutes().fieldwise(),
166/// );
167///
168/// # Ok::<(), Box<dyn std::error::Error>>(())
169/// ```
170///
171/// Or even round the span returned:
172///
173/// ```
174/// use jiff::{civil::{TimeDifference, time}, RoundMode, ToSpan, Unit};
175///
176/// let time1 = time(23, 30, 0, 0);
177/// let time2 = time(23, 35, 59, 0);
178/// assert_eq!(
179/// time1.until(
180/// TimeDifference::new(time2).smallest(Unit::Minute),
181/// )?,
182/// 5.minutes().fieldwise(),
183/// );
184/// // `TimeDifference` uses truncation as a rounding mode by default,
185/// // but you can set the rounding mode to break ties away from zero:
186/// assert_eq!(
187/// time1.until(
188/// TimeDifference::new(time2)
189/// .smallest(Unit::Minute)
190/// .mode(RoundMode::HalfExpand),
191/// )?,
192/// // Rounds up to 6 minutes.
193/// 6.minutes().fieldwise(),
194/// );
195///
196/// # Ok::<(), Box<dyn std::error::Error>>(())
197/// ```
198///
199/// # Rounding
200///
201/// A `Time` can be rounded based on a [`TimeRound`] configuration of smallest
202/// units, rounding increment and rounding mode. Here's an example showing how
203/// to round to the nearest third hour:
204///
205/// ```
206/// use jiff::{civil::{TimeRound, time}, Unit};
207///
208/// let t = time(16, 27, 29, 999_999_999);
209/// assert_eq!(
210/// t.round(TimeRound::new().smallest(Unit::Hour).increment(3))?,
211/// time(15, 0, 0, 0),
212/// );
213/// // Or alternatively, make use of the `From<(Unit, i64)> for TimeRound`
214/// // trait implementation:
215/// assert_eq!(t.round((Unit::Hour, 3))?, time(15, 0, 0, 0));
216///
217/// # Ok::<(), Box<dyn std::error::Error>>(())
218/// ```
219///
220/// See [`Time::round`] for more details.
221#[derive(Clone, Copy, Eq, Hash, PartialEq, PartialOrd, Ord)]
222pub struct Time {
223 hour: Hour,
224 minute: Minute,
225 second: Second,
226 subsec_nanosecond: SubsecNanosecond,
227}
228
229impl Time {
230 /// The minimum representable time value.
231 ///
232 /// This corresponds to `00:00:00.000000000`.
233 pub const MIN: Time = Time::midnight();
234
235 /// The maximum representable time value.
236 ///
237 /// This corresponds to `23:59:59.999999999`.
238 pub const MAX: Time = Time::constant(23, 59, 59, 999_999_999);
239
240 /// Creates a new `Time` value from its component hour, minute, second and
241 /// fractional subsecond (up to nanosecond precision) values.
242 ///
243 /// To set the component values of a time after creating it, use
244 /// [`TimeWith`] via [`Time::with`] to build a new [`Time`] from the fields
245 /// of an existing time.
246 ///
247 /// # Errors
248 ///
249 /// This returns an error unless *all* of the following conditions are
250 /// true:
251 ///
252 /// * `0 <= hour <= 23`
253 /// * `0 <= minute <= 59`
254 /// * `0 <= second <= 59`
255 /// * `0 <= subsec_nanosecond <= 999,999,999`
256 ///
257 /// # Example
258 ///
259 /// This shows an example of a valid time:
260 ///
261 /// ```
262 /// use jiff::civil::Time;
263 ///
264 /// let t = Time::new(21, 30, 5, 123_456_789).unwrap();
265 /// assert_eq!(t.hour(), 21);
266 /// assert_eq!(t.minute(), 30);
267 /// assert_eq!(t.second(), 5);
268 /// assert_eq!(t.millisecond(), 123);
269 /// assert_eq!(t.microsecond(), 456);
270 /// assert_eq!(t.nanosecond(), 789);
271 /// ```
272 ///
273 /// This shows an example of an invalid time:
274 ///
275 /// ```
276 /// use jiff::civil::Time;
277 ///
278 /// assert!(Time::new(21, 30, 60, 0).is_err());
279 /// ```
280 #[inline]
281 pub fn new(
282 hour: i8,
283 minute: i8,
284 second: i8,
285 subsec_nanosecond: i32,
286 ) -> Result<Time, Error> {
287 let hour = Hour::try_new("hour", hour)?;
288 let minute = Minute::try_new("minute", minute)?;
289 let second = Second::try_new("second", second)?;
290 let subsec_nanosecond =
291 SubsecNanosecond::try_new("subsec_nanosecond", subsec_nanosecond)?;
292 Ok(Time::new_ranged(hour, minute, second, subsec_nanosecond))
293 }
294
295 /// Creates a new `Time` value in a `const` context.
296 ///
297 /// # Panics
298 ///
299 /// This panics if the given values do not correspond to a valid `Time`.
300 /// All of the following conditions must be true:
301 ///
302 /// * `0 <= hour <= 23`
303 /// * `0 <= minute <= 59`
304 /// * `0 <= second <= 59`
305 /// * `0 <= subsec_nanosecond <= 999,999,999`
306 ///
307 /// Similarly, when used in a const context, invalid parameters will
308 /// prevent your Rust program from compiling.
309 ///
310 /// # Example
311 ///
312 /// This shows an example of a valid time in a `const` context:
313 ///
314 /// ```
315 /// use jiff::civil::Time;
316 ///
317 /// const BEDTIME: Time = Time::constant(21, 30, 5, 123_456_789);
318 /// assert_eq!(BEDTIME.hour(), 21);
319 /// assert_eq!(BEDTIME.minute(), 30);
320 /// assert_eq!(BEDTIME.second(), 5);
321 /// assert_eq!(BEDTIME.millisecond(), 123);
322 /// assert_eq!(BEDTIME.microsecond(), 456);
323 /// assert_eq!(BEDTIME.nanosecond(), 789);
324 /// assert_eq!(BEDTIME.subsec_nanosecond(), 123_456_789);
325 /// ```
326 #[inline]
327 pub const fn constant(
328 hour: i8,
329 minute: i8,
330 second: i8,
331 subsec_nanosecond: i32,
332 ) -> Time {
333 if !Hour::contains(hour) {
334 panic!("invalid hour");
335 }
336 if !Minute::contains(minute) {
337 panic!("invalid minute");
338 }
339 if !Second::contains(second) {
340 panic!("invalid second");
341 }
342 if !SubsecNanosecond::contains(subsec_nanosecond) {
343 panic!("invalid nanosecond");
344 }
345 let hour = Hour::new_unchecked(hour);
346 let minute = Minute::new_unchecked(minute);
347 let second = Second::new_unchecked(second);
348 let subsec_nanosecond =
349 SubsecNanosecond::new_unchecked(subsec_nanosecond);
350 Time { hour, minute, second, subsec_nanosecond }
351 }
352
353 /// Returns the first moment of time in a day.
354 ///
355 /// Specifically, this has the `hour`, `minute`, `second`, `millisecond`,
356 /// `microsecond` and `nanosecond` fields all set to `0`.
357 ///
358 /// # Example
359 ///
360 /// ```
361 /// use jiff::civil::Time;
362 ///
363 /// let t = Time::midnight();
364 /// assert_eq!(t.hour(), 0);
365 /// assert_eq!(t.minute(), 0);
366 /// assert_eq!(t.second(), 0);
367 /// assert_eq!(t.millisecond(), 0);
368 /// assert_eq!(t.microsecond(), 0);
369 /// assert_eq!(t.nanosecond(), 0);
370 /// ```
371 #[inline]
372 pub const fn midnight() -> Time {
373 Time::constant(0, 0, 0, 0)
374 }
375
376 /// Create a builder for constructing a `Time` from the fields of this
377 /// time.
378 ///
379 /// See the methods on [`TimeWith`] for the different ways one can set the
380 /// fields of a new `Time`.
381 ///
382 /// # Example
383 ///
384 /// Unlike [`Date`], a [`Time`] is valid for all possible valid values
385 /// of its fields. That is, there is no way for two valid field values
386 /// to combine into an invalid `Time`. So, for `Time`, this builder does
387 /// have as much of a benefit versus an API design with methods like
388 /// `Time::with_hour` and `Time::with_minute`. Nevertheless, this builder
389 /// permits settings multiple fields at the same time and performing only
390 /// one validity check. Moreover, this provides a consistent API with other
391 /// date and time types in this crate.
392 ///
393 /// ```
394 /// use jiff::civil::time;
395 ///
396 /// let t1 = time(0, 0, 24, 0);
397 /// let t2 = t1.with().hour(15).minute(30).millisecond(10).build()?;
398 /// assert_eq!(t2, time(15, 30, 24, 10_000_000));
399 ///
400 /// # Ok::<(), Box<dyn std::error::Error>>(())
401 /// ```
402 #[inline]
403 pub fn with(self) -> TimeWith {
404 TimeWith::new(self)
405 }
406
407 /// Returns the "hour" component of this time.
408 ///
409 /// The value returned is guaranteed to be in the range `0..=23`.
410 ///
411 /// # Example
412 ///
413 /// ```
414 /// use jiff::civil::time;
415 ///
416 /// let t = time(13, 35, 56, 123_456_789);
417 /// assert_eq!(t.hour(), 13);
418 /// ```
419 #[inline]
420 pub fn hour(self) -> i8 {
421 self.hour_ranged().get()
422 }
423
424 /// Returns the "minute" component of this time.
425 ///
426 /// The value returned is guaranteed to be in the range `0..=59`.
427 ///
428 /// # Example
429 ///
430 /// ```
431 /// use jiff::civil::time;
432 ///
433 /// let t = time(13, 35, 56, 123_456_789);
434 /// assert_eq!(t.minute(), 35);
435 /// ```
436 #[inline]
437 pub fn minute(self) -> i8 {
438 self.minute_ranged().get()
439 }
440
441 /// Returns the "second" component of this time.
442 ///
443 /// The value returned is guaranteed to be in the range `0..=59`.
444 ///
445 /// # Example
446 ///
447 /// ```
448 /// use jiff::civil::time;
449 ///
450 /// let t = time(13, 35, 56, 123_456_789);
451 /// assert_eq!(t.second(), 56);
452 /// ```
453 #[inline]
454 pub fn second(self) -> i8 {
455 self.second_ranged().get()
456 }
457
458 /// Returns the "millisecond" component of this time.
459 ///
460 /// The value returned is guaranteed to be in the range `0..=999`.
461 ///
462 /// # Example
463 ///
464 /// ```
465 /// use jiff::civil::time;
466 ///
467 /// let t = time(13, 35, 56, 123_456_789);
468 /// assert_eq!(t.millisecond(), 123);
469 /// ```
470 #[inline]
471 pub fn millisecond(self) -> i16 {
472 self.millisecond_ranged().get()
473 }
474
475 /// Returns the "microsecond" component of this time.
476 ///
477 /// The value returned is guaranteed to be in the range `0..=999`.
478 ///
479 /// # Example
480 ///
481 /// ```
482 /// use jiff::civil::time;
483 ///
484 /// let t = time(13, 35, 56, 123_456_789);
485 /// assert_eq!(t.microsecond(), 456);
486 /// ```
487 #[inline]
488 pub fn microsecond(self) -> i16 {
489 self.microsecond_ranged().get()
490 }
491
492 /// Returns the "nanosecond" component of this time.
493 ///
494 /// The value returned is guaranteed to be in the range `0..=999`.
495 ///
496 /// # Example
497 ///
498 /// ```
499 /// use jiff::civil::time;
500 ///
501 /// let t = time(13, 35, 56, 123_456_789);
502 /// assert_eq!(t.nanosecond(), 789);
503 /// ```
504 #[inline]
505 pub fn nanosecond(self) -> i16 {
506 self.nanosecond_ranged().get()
507 }
508
509 /// Returns the fractional nanosecond for this `Time` value.
510 ///
511 /// If you want to set this value on `Time`, then use
512 /// [`TimeWith::subsec_nanosecond`] via [`Time::with`].
513 ///
514 /// The value returned is guaranteed to be in the range `0..=999_999_999`.
515 ///
516 /// # Example
517 ///
518 /// This shows the relationship between constructing a `Time` value
519 /// with routines like `with().millisecond()` and accessing the entire
520 /// fractional part as a nanosecond:
521 ///
522 /// ```
523 /// use jiff::civil::time;
524 ///
525 /// let t = time(15, 21, 35, 0).with().millisecond(987).build()?;
526 /// assert_eq!(t.subsec_nanosecond(), 987_000_000);
527 ///
528 /// # Ok::<(), Box<dyn std::error::Error>>(())
529 /// ```
530 ///
531 /// # Example: nanoseconds from a timestamp
532 ///
533 /// This shows how the fractional nanosecond part of a `Time` value
534 /// manifests from a specific timestamp.
535 ///
536 /// ```
537 /// use jiff::{civil, Timestamp};
538 ///
539 /// // 1,234 nanoseconds after the Unix epoch.
540 /// let zdt = Timestamp::new(0, 1_234)?.in_tz("UTC")?;
541 /// let time = zdt.datetime().time();
542 /// assert_eq!(time.subsec_nanosecond(), 1_234);
543 ///
544 /// // 1,234 nanoseconds before the Unix epoch.
545 /// let zdt = Timestamp::new(0, -1_234)?.in_tz("UTC")?;
546 /// let time = zdt.datetime().time();
547 /// // The nanosecond is equal to `1_000_000_000 - 1_234`.
548 /// assert_eq!(time.subsec_nanosecond(), 999998766);
549 /// // Looking at the other components of the time value might help.
550 /// assert_eq!(time.hour(), 23);
551 /// assert_eq!(time.minute(), 59);
552 /// assert_eq!(time.second(), 59);
553 ///
554 /// # Ok::<(), Box<dyn std::error::Error>>(())
555 /// ```
556 #[inline]
557 pub fn subsec_nanosecond(self) -> i32 {
558 self.subsec_nanosecond_ranged().get()
559 }
560
561 /// Given a [`Date`], this constructs a [`DateTime`] value with its time
562 /// component equal to this time.
563 ///
564 /// This is a convenience function for [`DateTime::from_parts`].
565 ///
566 /// # Example
567 ///
568 /// ```
569 /// use jiff::civil::{DateTime, date, time};
570 ///
571 /// let d = date(2010, 3, 14);
572 /// let t = time(2, 30, 0, 0);
573 /// assert_eq!(DateTime::from_parts(d, t), t.to_datetime(d));
574 /// ```
575 #[inline]
576 pub const fn to_datetime(self, date: Date) -> DateTime {
577 DateTime::from_parts(date, self)
578 }
579
580 /// A convenience function for constructing a [`DateTime`] from this time
581 /// on the date given by its components.
582 ///
583 /// # Example
584 ///
585 /// ```
586 /// use jiff::civil::time;
587 ///
588 /// assert_eq!(
589 /// time(2, 30, 0, 0).on(2010, 3, 14).to_string(),
590 /// "2010-03-14T02:30:00",
591 /// );
592 /// ```
593 ///
594 /// One can also flip the order by making use of [`Date::at`]:
595 ///
596 /// ```
597 /// use jiff::civil::date;
598 ///
599 /// assert_eq!(
600 /// date(2010, 3, 14).at(2, 30, 0, 0).to_string(),
601 /// "2010-03-14T02:30:00",
602 /// );
603 /// ```
604 #[inline]
605 pub const fn on(self, year: i16, month: i8, day: i8) -> DateTime {
606 DateTime::from_parts(Date::constant(year, month, day), self)
607 }
608
609 /// Add the given span to this time and wrap around on overflow.
610 ///
611 /// This operation accepts three different duration types: [`Span`],
612 /// [`SignedDuration`] or [`std::time::Duration`]. This is achieved via
613 /// `From` trait implementations for the [`TimeArithmetic`] type.
614 ///
615 /// # Properties
616 ///
617 /// Given times `t1` and `t2`, and a span `s`, with `t2 = t1 + s`, it
618 /// follows then that `t1 = t2 - s` for all values of `t1` and `s` that sum
619 /// to `t2`.
620 ///
621 /// In short, subtracting the given span from the sum returned by this
622 /// function is guaranteed to result in precisely the original time.
623 ///
624 /// # Example: available via addition operator
625 ///
626 /// This routine can be used via the `+` operator.
627 ///
628 /// ```
629 /// use jiff::{civil::time, ToSpan};
630 ///
631 /// let t = time(20, 10, 1, 0);
632 /// assert_eq!(
633 /// t + 1.hours().minutes(49).seconds(59),
634 /// time(22, 0, 0, 0),
635 /// );
636 /// ```
637 ///
638 /// # Example: add nanoseconds to a `Time`
639 ///
640 /// ```
641 /// use jiff::{civil::time, ToSpan};
642 ///
643 /// let t = time(22, 35, 1, 0);
644 /// assert_eq!(
645 /// time(22, 35, 3, 500_000_000),
646 /// t.wrapping_add(2_500_000_000i64.nanoseconds()),
647 /// );
648 /// ```
649 ///
650 /// # Example: add span with multiple units
651 ///
652 /// ```
653 /// use jiff::{civil::time, ToSpan};
654 ///
655 /// let t = time(20, 10, 1, 0);
656 /// assert_eq!(
657 /// time(22, 0, 0, 0),
658 /// t.wrapping_add(1.hours().minutes(49).seconds(59)),
659 /// );
660 /// ```
661 ///
662 /// # Example: adding an empty span is a no-op
663 ///
664 /// ```
665 /// use jiff::{civil::time, Span};
666 ///
667 /// let t = time(20, 10, 1, 0);
668 /// assert_eq!(t, t.wrapping_add(Span::new()));
669 /// ```
670 ///
671 /// # Example: addition wraps on overflow
672 ///
673 /// ```
674 /// use jiff::{civil::time, SignedDuration, ToSpan};
675 ///
676 /// let t = time(23, 59, 59, 999_999_999);
677 /// assert_eq!(
678 /// t.wrapping_add(1.nanoseconds()),
679 /// time(0, 0, 0, 0),
680 /// );
681 /// assert_eq!(
682 /// t.wrapping_add(SignedDuration::from_nanos(1)),
683 /// time(0, 0, 0, 0),
684 /// );
685 /// assert_eq!(
686 /// t.wrapping_add(std::time::Duration::from_nanos(1)),
687 /// time(0, 0, 0, 0),
688 /// );
689 /// ```
690 ///
691 /// Similarly, if there are any non-zero units greater than hours in the
692 /// given span, then they also result in wrapping behavior (i.e., they are
693 /// ignored):
694 ///
695 /// ```
696 /// use jiff::{civil::time, ToSpan};
697 ///
698 /// // doesn't matter what our time value is in this example
699 /// let t = time(0, 0, 0, 0);
700 /// assert_eq!(t, t.wrapping_add(1.days()));
701 /// ```
702 #[inline]
703 pub fn wrapping_add<A: Into<TimeArithmetic>>(self, duration: A) -> Time {
704 let duration: TimeArithmetic = duration.into();
705 duration.wrapping_add(self)
706 }
707
708 #[inline]
709 fn wrapping_add_span(self, span: Span) -> Time {
710 let mut sum = self.to_nanosecond().without_bounds();
711 sum = sum.wrapping_add(
712 span.get_hours_ranged()
713 .without_bounds()
714 .wrapping_mul(t::NANOS_PER_HOUR),
715 );
716 sum = sum.wrapping_add(
717 span.get_minutes_ranged()
718 .without_bounds()
719 .wrapping_mul(t::NANOS_PER_MINUTE),
720 );
721 sum = sum.wrapping_add(
722 span.get_seconds_ranged()
723 .without_bounds()
724 .wrapping_mul(t::NANOS_PER_SECOND),
725 );
726 sum = sum.wrapping_add(
727 span.get_milliseconds_ranged()
728 .without_bounds()
729 .wrapping_mul(t::NANOS_PER_MILLI),
730 );
731 sum = sum.wrapping_add(
732 span.get_microseconds_ranged()
733 .without_bounds()
734 .wrapping_mul(t::NANOS_PER_MICRO),
735 );
736 sum = sum.wrapping_add(span.get_nanoseconds_ranged().without_bounds());
737 let civil_day_nanosecond = sum % t::NANOS_PER_CIVIL_DAY;
738 Time::from_nanosecond(civil_day_nanosecond.rinto())
739 }
740
741 #[inline]
742 fn wrapping_add_signed_duration(self, duration: SignedDuration) -> Time {
743 let start = t::NoUnits128::rfrom(self.to_nanosecond());
744 let duration = t::NoUnits128::new_unchecked(duration.as_nanos());
745 let end = start.wrapping_add(duration) % t::NANOS_PER_CIVIL_DAY;
746 Time::from_nanosecond(end.rinto())
747 }
748
749 #[inline]
750 fn wrapping_add_unsigned_duration(
751 self,
752 duration: UnsignedDuration,
753 ) -> Time {
754 let start = t::NoUnits128::rfrom(self.to_nanosecond());
755 // OK because 96-bit unsigned integer can't overflow i128.
756 let duration = i128::try_from(duration.as_nanos()).unwrap();
757 let duration = t::NoUnits128::new_unchecked(duration);
758 let duration = duration % t::NANOS_PER_CIVIL_DAY;
759 let end = start.wrapping_add(duration) % t::NANOS_PER_CIVIL_DAY;
760 Time::from_nanosecond(end.rinto())
761 }
762
763 /// This routine is identical to [`Time::wrapping_add`] with the duration
764 /// negated.
765 ///
766 /// # Example
767 ///
768 /// ```
769 /// use jiff::{civil::time, SignedDuration, ToSpan};
770 ///
771 /// let t = time(0, 0, 0, 0);
772 /// assert_eq!(
773 /// t.wrapping_sub(1.nanoseconds()),
774 /// time(23, 59, 59, 999_999_999),
775 /// );
776 /// assert_eq!(
777 /// t.wrapping_sub(SignedDuration::from_nanos(1)),
778 /// time(23, 59, 59, 999_999_999),
779 /// );
780 /// assert_eq!(
781 /// t.wrapping_sub(std::time::Duration::from_nanos(1)),
782 /// time(23, 59, 59, 999_999_999),
783 /// );
784 ///
785 /// assert_eq!(
786 /// t.wrapping_sub(SignedDuration::MIN),
787 /// time(15, 30, 8, 999_999_999),
788 /// );
789 /// assert_eq!(
790 /// t.wrapping_sub(SignedDuration::MAX),
791 /// time(8, 29, 52, 1),
792 /// );
793 /// assert_eq!(
794 /// t.wrapping_sub(std::time::Duration::MAX),
795 /// time(16, 59, 44, 1),
796 /// );
797 /// ```
798 #[inline]
799 pub fn wrapping_sub<A: Into<TimeArithmetic>>(self, duration: A) -> Time {
800 let duration: TimeArithmetic = duration.into();
801 duration.wrapping_sub(self)
802 }
803
804 #[inline]
805 fn wrapping_sub_unsigned_duration(
806 self,
807 duration: UnsignedDuration,
808 ) -> Time {
809 let start = t::NoUnits128::rfrom(self.to_nanosecond());
810 // OK because 96-bit unsigned integer can't overflow i128.
811 let duration = i128::try_from(duration.as_nanos()).unwrap();
812 let duration = t::NoUnits128::new_unchecked(duration);
813 let end = start.wrapping_sub(duration) % t::NANOS_PER_CIVIL_DAY;
814 Time::from_nanosecond(end.rinto())
815 }
816
817 /// Add the given span to this time and return an error if the result would
818 /// otherwise overflow.
819 ///
820 /// This operation accepts three different duration types: [`Span`],
821 /// [`SignedDuration`] or [`std::time::Duration`]. This is achieved via
822 /// `From` trait implementations for the [`TimeArithmetic`] type.
823 ///
824 /// # Properties
825 ///
826 /// Given a time `t1` and a span `s`, and assuming `t2 = t1 + s` exists, it
827 /// follows then that `t1 = t2 - s` for all values of `t1` and `s` that sum
828 /// to a valid `t2`.
829 ///
830 /// In short, subtracting the given span from the sum returned by this
831 /// function is guaranteed to result in precisely the original time.
832 ///
833 /// # Errors
834 ///
835 /// If the sum would overflow the minimum or maximum timestamp values, then
836 /// an error is returned.
837 ///
838 /// If the given span has any non-zero units greater than hours, then an
839 /// error is returned.
840 ///
841 /// # Example: add nanoseconds to a `Time`
842 ///
843 /// ```
844 /// use jiff::{civil::time, ToSpan};
845 ///
846 /// let t = time(22, 35, 1, 0);
847 /// assert_eq!(
848 /// time(22, 35, 3, 500_000_000),
849 /// t.checked_add(2_500_000_000i64.nanoseconds())?,
850 /// );
851 /// # Ok::<(), Box<dyn std::error::Error>>(())
852 /// ```
853 ///
854 /// # Example: add span with multiple units
855 ///
856 /// ```
857 /// use jiff::{civil::time, ToSpan};
858 ///
859 /// let t = time(20, 10, 1, 0);
860 /// assert_eq!(
861 /// time(22, 0, 0, 0),
862 /// t.checked_add(1.hours().minutes(49).seconds(59))?,
863 /// );
864 /// # Ok::<(), Box<dyn std::error::Error>>(())
865 /// ```
866 ///
867 /// # Example: adding an empty span is a no-op
868 ///
869 /// ```
870 /// use jiff::{civil::time, Span};
871 ///
872 /// let t = time(20, 10, 1, 0);
873 /// assert_eq!(t, t.checked_add(Span::new())?);
874 ///
875 /// # Ok::<(), Box<dyn std::error::Error>>(())
876 /// ```
877 ///
878 /// # Example: error on overflow
879 ///
880 /// ```
881 /// use jiff::{civil::time, ToSpan};
882 ///
883 /// // okay
884 /// let t = time(23, 59, 59, 999_999_998);
885 /// assert_eq!(
886 /// t.with().nanosecond(999).build()?,
887 /// t.checked_add(1.nanoseconds())?,
888 /// );
889 ///
890 /// // not okay
891 /// let t = time(23, 59, 59, 999_999_999);
892 /// assert!(t.checked_add(1.nanoseconds()).is_err());
893 ///
894 /// # Ok::<(), Box<dyn std::error::Error>>(())
895 /// ```
896 ///
897 /// Similarly, if there are any non-zero units greater than hours in the
898 /// given span, then they also result in overflow (and thus an error):
899 ///
900 /// ```
901 /// use jiff::{civil::time, ToSpan};
902 ///
903 /// // doesn't matter what our time value is in this example
904 /// let t = time(0, 0, 0, 0);
905 /// assert!(t.checked_add(1.days()).is_err());
906 /// ```
907 ///
908 /// # Example: adding absolute durations
909 ///
910 /// This shows how to add signed and unsigned absolute durations to a
911 /// `Time`. As with adding a `Span`, any overflow that occurs results in
912 /// an error.
913 ///
914 /// ```
915 /// use std::time::Duration;
916 ///
917 /// use jiff::{civil::time, SignedDuration};
918 ///
919 /// let t = time(23, 0, 0, 0);
920 ///
921 /// let dur = SignedDuration::from_mins(30);
922 /// assert_eq!(t.checked_add(dur)?, time(23, 30, 0, 0));
923 /// assert_eq!(t.checked_add(-dur)?, time(22, 30, 0, 0));
924 ///
925 /// let dur = Duration::new(0, 1);
926 /// assert_eq!(t.checked_add(dur)?, time(23, 0, 0, 1));
927 ///
928 /// # Ok::<(), Box<dyn std::error::Error>>(())
929 /// ```
930 #[inline]
931 pub fn checked_add<A: Into<TimeArithmetic>>(
932 self,
933 duration: A,
934 ) -> Result<Time, Error> {
935 let duration: TimeArithmetic = duration.into();
936 duration.checked_add(self)
937 }
938
939 #[inline]
940 fn checked_add_span(self, span: Span) -> Result<Time, Error> {
941 let (time, span) = self.overflowing_add(span)?;
942 if let Some(err) = span.smallest_non_time_non_zero_unit_error() {
943 return Err(err);
944 }
945 Ok(time)
946 }
947
948 #[inline]
949 fn checked_add_duration(
950 self,
951 duration: SignedDuration,
952 ) -> Result<Time, Error> {
953 let original = duration;
954 let start = t::NoUnits128::rfrom(self.to_nanosecond());
955 let duration = t::NoUnits128::new_unchecked(duration.as_nanos());
956 // This can never fail because the maximum duration fits into a
957 // 96-bit integer, and adding any 96-bit integer to any 64-bit
958 // integer can never overflow a 128-bit integer.
959 let end = start.try_checked_add("nanoseconds", duration).unwrap();
960 let end = CivilDayNanosecond::try_rfrom("nanoseconds", end)
961 .with_context(|| {
962 err!(
963 "adding signed duration {duration:?}, equal to
964 {nanos} nanoseconds, to {time} overflowed",
965 duration = original,
966 nanos = original.as_nanos(),
967 time = self,
968 )
969 })?;
970 Ok(Time::from_nanosecond(end))
971 }
972
973 /// This routine is identical to [`Time::checked_add`] with the duration
974 /// negated.
975 ///
976 /// # Errors
977 ///
978 /// This has the same error conditions as [`Time::checked_add`].
979 ///
980 /// # Example
981 ///
982 /// ```
983 /// use std::time::Duration;
984 ///
985 /// use jiff::{civil::time, SignedDuration, ToSpan};
986 ///
987 /// let t = time(22, 0, 0, 0);
988 /// assert_eq!(
989 /// t.checked_sub(1.hours().minutes(49).seconds(59))?,
990 /// time(20, 10, 1, 0),
991 /// );
992 /// assert_eq!(
993 /// t.checked_sub(SignedDuration::from_hours(1))?,
994 /// time(21, 0, 0, 0),
995 /// );
996 /// assert_eq!(
997 /// t.checked_sub(Duration::from_secs(60 * 60))?,
998 /// time(21, 0, 0, 0),
999 /// );
1000 /// # Ok::<(), Box<dyn std::error::Error>>(())
1001 /// ```
1002 #[inline]
1003 pub fn checked_sub<A: Into<TimeArithmetic>>(
1004 self,
1005 duration: A,
1006 ) -> Result<Time, Error> {
1007 let duration: TimeArithmetic = duration.into();
1008 duration.checked_neg().and_then(|ta| ta.checked_add(self))
1009 }
1010
1011 /// This routine is identical to [`Time::checked_add`], except the
1012 /// result saturates on overflow. That is, instead of overflow, either
1013 /// [`Time::MIN`] or [`Time::MAX`] is returned.
1014 ///
1015 /// # Example
1016 ///
1017 /// ```
1018 /// use jiff::{civil::{Time, time}, SignedDuration, ToSpan};
1019 ///
1020 /// // no saturation
1021 /// let t = time(23, 59, 59, 999_999_998);
1022 /// assert_eq!(
1023 /// t.with().nanosecond(999).build()?,
1024 /// t.saturating_add(1.nanoseconds()),
1025 /// );
1026 ///
1027 /// // saturates
1028 /// let t = time(23, 59, 59, 999_999_999);
1029 /// assert_eq!(Time::MAX, t.saturating_add(1.nanoseconds()));
1030 /// assert_eq!(Time::MAX, t.saturating_add(SignedDuration::MAX));
1031 /// assert_eq!(Time::MIN, t.saturating_add(SignedDuration::MIN));
1032 /// assert_eq!(Time::MAX, t.saturating_add(std::time::Duration::MAX));
1033 ///
1034 /// # Ok::<(), Box<dyn std::error::Error>>(())
1035 /// ```
1036 ///
1037 /// Similarly, if there are any non-zero units greater than hours in the
1038 /// given span, then they also result in overflow (and thus saturation):
1039 ///
1040 /// ```
1041 /// use jiff::{civil::{Time, time}, ToSpan};
1042 ///
1043 /// // doesn't matter what our time value is in this example
1044 /// let t = time(0, 0, 0, 0);
1045 /// assert_eq!(Time::MAX, t.saturating_add(1.days()));
1046 /// ```
1047 #[inline]
1048 pub fn saturating_add<A: Into<TimeArithmetic>>(self, duration: A) -> Time {
1049 let duration: TimeArithmetic = duration.into();
1050 self.checked_add(duration).unwrap_or_else(|_| {
1051 if duration.is_negative() {
1052 Time::MIN
1053 } else {
1054 Time::MAX
1055 }
1056 })
1057 }
1058
1059 /// This routine is identical to [`Time::saturating_add`] with the duration
1060 /// negated.
1061 ///
1062 /// # Example
1063 ///
1064 /// ```
1065 /// use jiff::{civil::{Time, time}, SignedDuration, ToSpan};
1066 ///
1067 /// // no saturation
1068 /// let t = time(0, 0, 0, 1);
1069 /// assert_eq!(
1070 /// t.with().nanosecond(0).build()?,
1071 /// t.saturating_sub(1.nanoseconds()),
1072 /// );
1073 ///
1074 /// // saturates
1075 /// let t = time(0, 0, 0, 0);
1076 /// assert_eq!(Time::MIN, t.saturating_sub(1.nanoseconds()));
1077 /// assert_eq!(Time::MIN, t.saturating_sub(SignedDuration::MAX));
1078 /// assert_eq!(Time::MAX, t.saturating_sub(SignedDuration::MIN));
1079 /// assert_eq!(Time::MIN, t.saturating_sub(std::time::Duration::MAX));
1080 ///
1081 /// # Ok::<(), Box<dyn std::error::Error>>(())
1082 /// ```
1083 #[inline]
1084 pub fn saturating_sub<A: Into<TimeArithmetic>>(self, duration: A) -> Time {
1085 let duration: TimeArithmetic = duration.into();
1086 let Ok(duration) = duration.checked_neg() else { return Time::MIN };
1087 self.saturating_add(duration)
1088 }
1089
1090 /// Adds the given span to the this time value, and returns the resulting
1091 /// time with any overflowing amount in the span returned.
1092 ///
1093 /// This isn't part of the public API because it seems a little odd, and
1094 /// I'm unsure of its use case. Overall this routine is a bit specialized
1095 /// and I'm not sure how generally useful it is. But it is used in crucial
1096 /// points in other parts of this crate.
1097 ///
1098 /// If you want this public, please file an issue and discuss your use
1099 /// case: https://github.com/BurntSushi/jiff/issues/new
1100 #[inline]
1101 pub(crate) fn overflowing_add(
1102 self,
1103 span: Span,
1104 ) -> Result<(Time, Span), Error> {
1105 if let Some(err) = span.smallest_non_time_non_zero_unit_error() {
1106 return Err(err);
1107 }
1108 let span_nanos = span.to_invariant_nanoseconds();
1109 let time_nanos = self.to_nanosecond();
1110 let sum = span_nanos + time_nanos;
1111 let days = t::SpanDays::try_new(
1112 "overflowing-days",
1113 sum.div_floor(t::NANOS_PER_CIVIL_DAY),
1114 )?;
1115 let time_nanos = sum.rem_floor(t::NANOS_PER_CIVIL_DAY);
1116 let time = Time::from_nanosecond(time_nanos.rinto());
1117 Ok((time, Span::new().days_ranged(days)))
1118 }
1119
1120 /// Like `overflowing_add`, but with `SignedDuration`.
1121 ///
1122 /// This is used for datetime arithmetic, when adding to the time
1123 /// component overflows into days (always 24 hours).
1124 #[inline]
1125 pub(crate) fn overflowing_add_duration(
1126 self,
1127 duration: SignedDuration,
1128 ) -> Result<(Time, SignedDuration), Error> {
1129 if self.subsec_nanosecond() != 0 || duration.subsec_nanos() != 0 {
1130 return self.overflowing_add_duration_general(duration);
1131 }
1132 let start = t::NoUnits::rfrom(self.to_second());
1133 let duration_secs = t::NoUnits::new_unchecked(duration.as_secs());
1134 // This can fail if the duration is near its min or max values, and
1135 // thus we fall back to the more general (but slower) implementation
1136 // that uses 128-bit integers.
1137 let Some(sum) = start.checked_add(duration_secs) else {
1138 return self.overflowing_add_duration_general(duration);
1139 };
1140 let days = t::SpanDays::try_new(
1141 "overflowing-days",
1142 sum.div_floor(t::SECONDS_PER_CIVIL_DAY),
1143 )?;
1144 let time_secs = sum.rem_floor(t::SECONDS_PER_CIVIL_DAY);
1145 let time = Time::from_second(time_secs.rinto());
1146 // OK because of the constraint imposed by t::SpanDays.
1147 let hours = i64::from(days).checked_mul(24).unwrap();
1148 Ok((time, SignedDuration::from_hours(hours)))
1149 }
1150
1151 /// Like `overflowing_add`, but with `SignedDuration`.
1152 ///
1153 /// This is used for datetime arithmetic, when adding to the time
1154 /// component overflows into days (always 24 hours).
1155 #[inline(never)]
1156 #[cold]
1157 fn overflowing_add_duration_general(
1158 self,
1159 duration: SignedDuration,
1160 ) -> Result<(Time, SignedDuration), Error> {
1161 let start = t::NoUnits128::rfrom(self.to_nanosecond());
1162 let duration = t::NoUnits96::new_unchecked(duration.as_nanos());
1163 // This can never fail because the maximum duration fits into a
1164 // 96-bit integer, and adding any 96-bit integer to any 64-bit
1165 // integer can never overflow a 128-bit integer.
1166 let sum = start.try_checked_add("nanoseconds", duration).unwrap();
1167 let days = t::SpanDays::try_new(
1168 "overflowing-days",
1169 sum.div_floor(t::NANOS_PER_CIVIL_DAY),
1170 )?;
1171 let time_nanos = sum.rem_floor(t::NANOS_PER_CIVIL_DAY);
1172 let time = Time::from_nanosecond(time_nanos.rinto());
1173 // OK because of the constraint imposed by t::SpanDays.
1174 let hours = i64::from(days).checked_mul(24).unwrap();
1175 Ok((time, SignedDuration::from_hours(hours)))
1176 }
1177
1178 /// Returns a span representing the elapsed time from this time until
1179 /// the given `other` time.
1180 ///
1181 /// When `other` is earlier than this time, the span returned will be
1182 /// negative.
1183 ///
1184 /// Depending on the input provided, the span returned is rounded. It may
1185 /// also be balanced down to smaller units than the default. By default,
1186 /// the span returned is balanced such that the biggest possible unit is
1187 /// hours.
1188 ///
1189 /// This operation is configured by providing a [`TimeDifference`]
1190 /// value. Since this routine accepts anything that implements
1191 /// `Into<TimeDifference>`, once can pass a `Time` directly. One
1192 /// can also pass a `(Unit, Time)`, where `Unit` is treated as
1193 /// [`TimeDifference::largest`].
1194 ///
1195 /// # Properties
1196 ///
1197 /// As long as no rounding is requested, it is guaranteed that adding the
1198 /// span returned to the `other` time will always equal this time.
1199 ///
1200 /// # Errors
1201 ///
1202 /// An error can occur if `TimeDifference` is misconfigured. For example,
1203 /// if the smallest unit provided is bigger than the largest unit, or if
1204 /// the largest unit is bigger than [`Unit::Hour`].
1205 ///
1206 /// It is guaranteed that if one provides a time with the default
1207 /// [`TimeDifference`] configuration, then this routine will never fail.
1208 ///
1209 /// # Examples
1210 ///
1211 /// ```
1212 /// use jiff::{civil::time, ToSpan};
1213 ///
1214 /// let t1 = time(22, 35, 1, 0);
1215 /// let t2 = time(22, 35, 3, 500_000_000);
1216 /// assert_eq!(t1.until(t2)?, 2.seconds().milliseconds(500).fieldwise());
1217 /// // Flipping the dates is fine, but you'll get a negative span.
1218 /// assert_eq!(t2.until(t1)?, -2.seconds().milliseconds(500).fieldwise());
1219 ///
1220 /// # Ok::<(), Box<dyn std::error::Error>>(())
1221 /// ```
1222 ///
1223 /// # Example: using smaller units
1224 ///
1225 /// This example shows how to contract the span returned to smaller units.
1226 /// This makes use of a `From<(Unit, Time)> for TimeDifference`
1227 /// trait implementation.
1228 ///
1229 /// ```
1230 /// use jiff::{civil::time, Unit, ToSpan};
1231 ///
1232 /// let t1 = time(3, 24, 30, 3500);
1233 /// let t2 = time(15, 30, 0, 0);
1234 ///
1235 /// // The default limits spans to using "hours" as the biggest unit.
1236 /// let span = t1.until(t2)?;
1237 /// assert_eq!(span.to_string(), "PT12H5M29.9999965S");
1238 ///
1239 /// // But we can ask for smaller units, like capping the biggest unit
1240 /// // to minutes instead of hours.
1241 /// let span = t1.until((Unit::Minute, t2))?;
1242 /// assert_eq!(span.to_string(), "PT725M29.9999965S");
1243 ///
1244 /// # Ok::<(), Box<dyn std::error::Error>>(())
1245 /// ```
1246 #[inline]
1247 pub fn until<A: Into<TimeDifference>>(
1248 self,
1249 other: A,
1250 ) -> Result<Span, Error> {
1251 let args: TimeDifference = other.into();
1252 let span = args.until_with_largest_unit(self)?;
1253 if args.rounding_may_change_span() {
1254 span.round(args.round)
1255 } else {
1256 Ok(span)
1257 }
1258 }
1259
1260 /// This routine is identical to [`Time::until`], but the order of the
1261 /// parameters is flipped.
1262 ///
1263 /// # Errors
1264 ///
1265 /// This has the same error conditions as [`Time::until`].
1266 ///
1267 /// # Example
1268 ///
1269 /// This routine can be used via the `-` operator. Since the default
1270 /// configuration is used and because a `Span` can represent the difference
1271 /// between any two possible times, it will never panic.
1272 ///
1273 /// ```
1274 /// use jiff::{civil::time, ToSpan};
1275 ///
1276 /// let earlier = time(1, 0, 0, 0);
1277 /// let later = time(22, 30, 0, 0);
1278 /// assert_eq!(later - earlier, 21.hours().minutes(30).fieldwise());
1279 /// ```
1280 #[inline]
1281 pub fn since<A: Into<TimeDifference>>(
1282 self,
1283 other: A,
1284 ) -> Result<Span, Error> {
1285 let args: TimeDifference = other.into();
1286 let span = -args.until_with_largest_unit(self)?;
1287 if args.rounding_may_change_span() {
1288 span.round(args.round)
1289 } else {
1290 Ok(span)
1291 }
1292 }
1293
1294 /// Returns an absolute duration representing the elapsed time from this
1295 /// time until the given `other` time.
1296 ///
1297 /// When `other` occurs before this time, then the duration returned will
1298 /// be negative.
1299 ///
1300 /// Unlike [`Time::until`], this returns a duration corresponding to a
1301 /// 96-bit integer of nanoseconds between two times. In this case of
1302 /// computing durations between civil times where all days are assumed to
1303 /// be 24 hours long, the duration returned will always be less than 24
1304 /// hours.
1305 ///
1306 /// # Fallibility
1307 ///
1308 /// This routine never panics or returns an error. Since there are no
1309 /// configuration options that can be incorrectly provided, no error is
1310 /// possible when calling this routine. In contrast, [`Time::until`] can
1311 /// return an error in some cases due to misconfiguration. But like this
1312 /// routine, [`Time::until`] never panics or returns an error in its
1313 /// default configuration.
1314 ///
1315 /// # When should I use this versus [`Time::until`]?
1316 ///
1317 /// See the type documentation for [`SignedDuration`] for the section on
1318 /// when one should use [`Span`] and when one should use `SignedDuration`.
1319 /// In short, use `Span` (and therefore `Time::until`) unless you have a
1320 /// specific reason to do otherwise.
1321 ///
1322 /// # Example
1323 ///
1324 /// ```
1325 /// use jiff::{civil::time, SignedDuration};
1326 ///
1327 /// let t1 = time(22, 35, 1, 0);
1328 /// let t2 = time(22, 35, 3, 500_000_000);
1329 /// assert_eq!(t1.duration_until(t2), SignedDuration::new(2, 500_000_000));
1330 /// // Flipping the time is fine, but you'll get a negative duration.
1331 /// assert_eq!(t2.duration_until(t1), -SignedDuration::new(2, 500_000_000));
1332 /// ```
1333 ///
1334 /// # Example: difference with [`Time::until`]
1335 ///
1336 /// Since the difference between two civil times is always expressed in
1337 /// units of hours or smaller, and units of hours or smaller are always
1338 /// uniform, there is no "expressive" difference between this routine and
1339 /// `Time::until`. The only difference is that this routine returns a
1340 /// `SignedDuration` and `Time::until` returns a [`Span`]. Moreover, since
1341 /// the difference is always less than 24 hours, the return values can
1342 /// always be infallibly and losslessly converted between each other:
1343 ///
1344 /// ```
1345 /// use jiff::{civil::time, SignedDuration, Span};
1346 ///
1347 /// let t1 = time(22, 35, 1, 0);
1348 /// let t2 = time(22, 35, 3, 500_000_000);
1349 /// let dur = t1.duration_until(t2);
1350 /// // Guaranteed to never fail because the duration
1351 /// // between two civil times never exceeds the limits
1352 /// // of a `Span`.
1353 /// let span = Span::try_from(dur).unwrap();
1354 /// assert_eq!(span, Span::new().seconds(2).milliseconds(500).fieldwise());
1355 /// // Guaranteed to succeed and always return the original
1356 /// // duration because the units are always hours or smaller,
1357 /// // and thus uniform. This means a relative datetime is
1358 /// // never required to do this conversion.
1359 /// let dur = SignedDuration::try_from(span).unwrap();
1360 /// assert_eq!(dur, SignedDuration::new(2, 500_000_000));
1361 /// ```
1362 ///
1363 /// This conversion guarantee also applies to [`Time::until`] since it
1364 /// always returns a balanced span. That is, it never returns spans like
1365 /// `1 second 1000 milliseconds`. (Those cannot be losslessly converted to
1366 /// a `SignedDuration` since a `SignedDuration` is only represented as a
1367 /// single 96-bit integer of nanoseconds.)
1368 ///
1369 /// # Example: getting an unsigned duration
1370 ///
1371 /// If you're looking to find the duration between two times as a
1372 /// [`std::time::Duration`], you'll need to use this method to get a
1373 /// [`SignedDuration`] and then convert it to a `std::time::Duration`:
1374 ///
1375 /// ```
1376 /// use std::time::Duration;
1377 ///
1378 /// use jiff::{civil::time, SignedDuration, Span};
1379 ///
1380 /// let t1 = time(22, 35, 1, 0);
1381 /// let t2 = time(22, 35, 3, 500_000_000);
1382 /// let dur = Duration::try_from(t1.duration_until(t2))?;;
1383 /// assert_eq!(dur, Duration::new(2, 500_000_000));
1384 ///
1385 /// // Note that unsigned durations cannot represent all
1386 /// // possible differences! If the duration would be negative,
1387 /// // then the conversion fails:
1388 /// assert!(Duration::try_from(t2.duration_until(t1)).is_err());
1389 ///
1390 /// # Ok::<(), Box<dyn std::error::Error>>(())
1391 /// ```
1392 #[inline]
1393 pub fn duration_until(self, other: Time) -> SignedDuration {
1394 SignedDuration::time_until(self, other)
1395 }
1396
1397 /// This routine is identical to [`Time::duration_until`], but the order of
1398 /// the parameters is flipped.
1399 ///
1400 /// # Example
1401 ///
1402 /// ```
1403 /// use jiff::{civil::time, SignedDuration};
1404 ///
1405 /// let earlier = time(1, 0, 0, 0);
1406 /// let later = time(22, 30, 0, 0);
1407 /// assert_eq!(
1408 /// later.duration_since(earlier),
1409 /// SignedDuration::from_secs((21 * 60 * 60) + (30 * 60)),
1410 /// );
1411 /// ```
1412 #[inline]
1413 pub fn duration_since(self, other: Time) -> SignedDuration {
1414 SignedDuration::time_until(other, self)
1415 }
1416
1417 /// Rounds this time according to the [`TimeRound`] configuration given.
1418 ///
1419 /// The principal option is [`TimeRound::smallest`], which allows one
1420 /// to configure the smallest units in the returned time. Rounding
1421 /// is what determines whether that unit should keep its current value
1422 /// or whether it should be incremented. Moreover, the amount it should
1423 /// be incremented can be configured via [`TimeRound::increment`].
1424 /// Finally, the rounding strategy itself can be configured via
1425 /// [`TimeRound::mode`].
1426 ///
1427 /// Note that this routine is generic and accepts anything that
1428 /// implements `Into<TimeRound>`. Some notable implementations are:
1429 ///
1430 /// * `From<Unit> for Round`, which will automatically create a
1431 /// `TimeRound::new().smallest(unit)` from the unit provided.
1432 /// * `From<(Unit, i64)> for Round`, which will automatically create a
1433 /// `TimeRound::new().smallest(unit).increment(number)` from the unit
1434 /// and increment provided.
1435 ///
1436 /// # Errors
1437 ///
1438 /// This returns an error if the smallest unit configured on the given
1439 /// [`TimeRound`] is bigger than hours.
1440 ///
1441 /// The rounding increment must divide evenly into the next highest unit
1442 /// after the smallest unit configured (and must not be equivalent to it).
1443 /// For example, if the smallest unit is [`Unit::Nanosecond`], then *some*
1444 /// of the valid values for the rounding increment are `1`, `2`, `4`, `5`,
1445 /// `100` and `500`. Namely, any integer that divides evenly into `1,000`
1446 /// nanoseconds since there are `1,000` nanoseconds in the next highest
1447 /// unit (microseconds).
1448 ///
1449 /// This can never fail because of overflow for any input. The only
1450 /// possible errors are "configuration" errors.
1451 ///
1452 /// # Example
1453 ///
1454 /// This is a basic example that demonstrates rounding a datetime to the
1455 /// nearest second. This also demonstrates calling this method with the
1456 /// smallest unit directly, instead of constructing a `TimeRound` manually.
1457 ///
1458 /// ```
1459 /// use jiff::{civil::time, Unit};
1460 ///
1461 /// let t = time(15, 45, 10, 123_456_789);
1462 /// assert_eq!(
1463 /// t.round(Unit::Second)?,
1464 /// time(15, 45, 10, 0),
1465 /// );
1466 /// let t = time(15, 45, 10, 500_000_001);
1467 /// assert_eq!(
1468 /// t.round(Unit::Second)?,
1469 /// time(15, 45, 11, 0),
1470 /// );
1471 ///
1472 /// # Ok::<(), Box<dyn std::error::Error>>(())
1473 /// ```
1474 ///
1475 /// # Example: changing the rounding mode
1476 ///
1477 /// The default rounding mode is [`RoundMode::HalfExpand`], which
1478 /// breaks ties by rounding away from zero. But other modes like
1479 /// [`RoundMode::Trunc`] can be used too:
1480 ///
1481 /// ```
1482 /// use jiff::{civil::{TimeRound, time}, RoundMode, Unit};
1483 ///
1484 /// let t = time(15, 45, 10, 999_999_999);
1485 /// assert_eq!(
1486 /// t.round(Unit::Second)?,
1487 /// time(15, 45, 11, 0),
1488 /// );
1489 /// // The default will round up to the next second for any fraction
1490 /// // greater than or equal to 0.5. But truncation will always round
1491 /// // toward zero.
1492 /// assert_eq!(
1493 /// t.round(
1494 /// TimeRound::new().smallest(Unit::Second).mode(RoundMode::Trunc),
1495 /// )?,
1496 /// time(15, 45, 10, 0),
1497 /// );
1498 ///
1499 /// # Ok::<(), Box<dyn std::error::Error>>(())
1500 /// ```
1501 ///
1502 /// # Example: rounding to the nearest 5 minute increment
1503 ///
1504 /// ```
1505 /// use jiff::{civil::time, Unit};
1506 ///
1507 /// // rounds down
1508 /// let t = time(15, 27, 29, 999_999_999);
1509 /// assert_eq!(t.round((Unit::Minute, 5))?, time(15, 25, 0, 0));
1510 /// // rounds up
1511 /// let t = time(15, 27, 30, 0);
1512 /// assert_eq!(t.round((Unit::Minute, 5))?, time(15, 30, 0, 0));
1513 ///
1514 /// # Ok::<(), Box<dyn std::error::Error>>(())
1515 /// ```
1516 ///
1517 /// # Example: rounding wraps around on overflow
1518 ///
1519 /// This example demonstrates that it's possible for this operation to
1520 /// overflow, and as a result, have the time wrap around.
1521 ///
1522 /// ```
1523 /// use jiff::{civil::Time, Unit};
1524 ///
1525 /// let t = Time::MAX;
1526 /// assert_eq!(t.round(Unit::Hour)?, Time::MIN);
1527 ///
1528 /// # Ok::<(), Box<dyn std::error::Error>>(())
1529 /// ```
1530 #[inline]
1531 pub fn round<R: Into<TimeRound>>(self, options: R) -> Result<Time, Error> {
1532 let options: TimeRound = options.into();
1533 options.round(self)
1534 }
1535
1536 /// Return an iterator of periodic times determined by the given span.
1537 ///
1538 /// The given span may be negative, in which case, the iterator will move
1539 /// backwards through time. The iterator won't stop until either the span
1540 /// itself overflows, or it would otherwise exceed the minimum or maximum
1541 /// `Time` value.
1542 ///
1543 /// # Example: visiting every third hour
1544 ///
1545 /// This shows how to visit each third hour of a 24 hour time interval:
1546 ///
1547 /// ```
1548 /// use jiff::{civil::{Time, time}, ToSpan};
1549 ///
1550 /// let start = Time::MIN;
1551 /// let mut every_third_hour = vec![];
1552 /// for t in start.series(3.hours()) {
1553 /// every_third_hour.push(t);
1554 /// }
1555 /// assert_eq!(every_third_hour, vec![
1556 /// time(0, 0, 0, 0),
1557 /// time(3, 0, 0, 0),
1558 /// time(6, 0, 0, 0),
1559 /// time(9, 0, 0, 0),
1560 /// time(12, 0, 0, 0),
1561 /// time(15, 0, 0, 0),
1562 /// time(18, 0, 0, 0),
1563 /// time(21, 0, 0, 0),
1564 /// ]);
1565 /// ```
1566 ///
1567 /// Or go backwards every 6.5 hours:
1568 ///
1569 /// ```
1570 /// use jiff::{civil::{Time, time}, ToSpan};
1571 ///
1572 /// let start = time(23, 0, 0, 0);
1573 /// let times: Vec<Time> = start.series(-6.hours().minutes(30)).collect();
1574 /// assert_eq!(times, vec![
1575 /// time(23, 0, 0, 0),
1576 /// time(16, 30, 0, 0),
1577 /// time(10, 0, 0, 0),
1578 /// time(3, 30, 0, 0),
1579 /// ]);
1580 /// ```
1581 #[inline]
1582 pub fn series(self, period: Span) -> TimeSeries {
1583 TimeSeries { start: self, period, step: 0 }
1584 }
1585}
1586
1587/// Parsing and formatting using a "printf"-style API.
1588impl Time {
1589 /// Parses a civil time in `input` matching the given `format`.
1590 ///
1591 /// The format string uses a "printf"-style API where conversion
1592 /// specifiers can be used as place holders to match components of
1593 /// a datetime. For details on the specifiers supported, see the
1594 /// [`fmt::strtime`] module documentation.
1595 ///
1596 /// # Errors
1597 ///
1598 /// This returns an error when parsing failed. This might happen because
1599 /// the format string itself was invalid, or because the input didn't match
1600 /// the format string.
1601 ///
1602 /// This also returns an error if there wasn't sufficient information to
1603 /// construct a civil time. For example, if an offset wasn't parsed.
1604 ///
1605 /// # Example
1606 ///
1607 /// This example shows how to parse a civil time:
1608 ///
1609 /// ```
1610 /// use jiff::civil::Time;
1611 ///
1612 /// // Parse with a 12-hour clock.
1613 /// let time = Time::strptime("%I:%M%P", "4:30pm")?;
1614 /// assert_eq!(time.to_string(), "16:30:00");
1615 ///
1616 /// # Ok::<(), Box<dyn std::error::Error>>(())
1617 /// ```
1618 #[inline]
1619 pub fn strptime(
1620 format: impl AsRef<[u8]>,
1621 input: impl AsRef<[u8]>,
1622 ) -> Result<Time, Error> {
1623 fmt::strtime::parse(format, input).and_then(|tm| tm.to_time())
1624 }
1625
1626 /// Formats this civil time according to the given `format`.
1627 ///
1628 /// The format string uses a "printf"-style API where conversion
1629 /// specifiers can be used as place holders to format components of
1630 /// a datetime. For details on the specifiers supported, see the
1631 /// [`fmt::strtime`] module documentation.
1632 ///
1633 /// # Errors and panics
1634 ///
1635 /// While this routine itself does not error or panic, using the value
1636 /// returned may result in a panic if formatting fails. See the
1637 /// documentation on [`fmt::strtime::Display`] for more information.
1638 ///
1639 /// To format in a way that surfaces errors without panicking, use either
1640 /// [`fmt::strtime::format`] or [`fmt::strtime::BrokenDownTime::format`].
1641 ///
1642 /// # Example
1643 ///
1644 /// This example shows how to format a civil time in a 12 hour clock with
1645 /// no padding for the hour:
1646 ///
1647 /// ```
1648 /// use jiff::civil::time;
1649 ///
1650 /// let t = time(16, 30, 59, 0);
1651 /// let string = t.strftime("%-I:%M%P").to_string();
1652 /// assert_eq!(string, "4:30pm");
1653 /// ```
1654 ///
1655 /// Note that one can round a `Time` before formatting. For example, to
1656 /// round to the nearest minute:
1657 ///
1658 /// ```
1659 /// use jiff::{civil::time, Unit};
1660 ///
1661 /// let t = time(16, 30, 59, 0);
1662 /// let string = t.round(Unit::Minute)?.strftime("%-I:%M%P").to_string();
1663 /// assert_eq!(string, "4:31pm");
1664 ///
1665 /// # Ok::<(), Box<dyn std::error::Error>>(())
1666 /// ```
1667 #[inline]
1668 pub fn strftime<'f, F: 'f + ?Sized + AsRef<[u8]>>(
1669 &self,
1670 format: &'f F,
1671 ) -> fmt::strtime::Display<'f> {
1672 fmt::strtime::Display { fmt: format.as_ref(), tm: (*self).into() }
1673 }
1674}
1675
1676/// Crate internal APIs.
1677///
1678/// Many of these are mirrors of the public API, but on ranged types. These
1679/// are often much more convenient to use in composition with other parts of
1680/// the crate that also use ranged integer types. And this often permits the
1681/// routines to be infallible and (possibly) zero-cost.
1682impl Time {
1683 #[inline]
1684 pub(crate) fn new_ranged(
1685 hour: impl RInto<Hour>,
1686 minute: impl RInto<Minute>,
1687 second: impl RInto<Second>,
1688 subsec_nanosecond: impl RInto<SubsecNanosecond>,
1689 ) -> Time {
1690 Time {
1691 hour: hour.rinto(),
1692 minute: minute.rinto(),
1693 second: second.rinto(),
1694 subsec_nanosecond: subsec_nanosecond.rinto(),
1695 }
1696 }
1697
1698 /// Set the fractional parts of this time to the given units via ranged
1699 /// types.
1700 #[inline]
1701 fn with_subsec_parts_ranged(
1702 self,
1703 millisecond: impl RInto<Millisecond>,
1704 microsecond: impl RInto<Microsecond>,
1705 nanosecond: impl RInto<Nanosecond>,
1706 ) -> Time {
1707 let millisecond = SubsecNanosecond::rfrom(millisecond.rinto());
1708 let microsecond = SubsecNanosecond::rfrom(microsecond.rinto());
1709 let nanosecond = SubsecNanosecond::rfrom(nanosecond.rinto());
1710 let mut subsec_nanosecond =
1711 millisecond * t::MICROS_PER_MILLI * t::NANOS_PER_MICRO;
1712 subsec_nanosecond += microsecond * t::NANOS_PER_MICRO;
1713 subsec_nanosecond += nanosecond;
1714 Time { subsec_nanosecond: subsec_nanosecond.rinto(), ..self }
1715 }
1716
1717 #[inline]
1718 pub(crate) fn hour_ranged(self) -> Hour {
1719 self.hour
1720 }
1721
1722 #[inline]
1723 pub(crate) fn minute_ranged(self) -> Minute {
1724 self.minute
1725 }
1726
1727 #[inline]
1728 pub(crate) fn second_ranged(self) -> Second {
1729 self.second
1730 }
1731
1732 #[inline]
1733 pub(crate) fn millisecond_ranged(self) -> Millisecond {
1734 let micros = self.subsec_nanosecond_ranged() / t::NANOS_PER_MICRO;
1735 let millis = micros / t::MICROS_PER_MILLI;
1736 millis.rinto()
1737 }
1738
1739 #[inline]
1740 pub(crate) fn microsecond_ranged(self) -> Microsecond {
1741 let micros = self.subsec_nanosecond_ranged() / t::NANOS_PER_MICRO;
1742 let only_micros = micros % t::MICROS_PER_MILLI;
1743 only_micros.rinto()
1744 }
1745
1746 #[inline]
1747 pub(crate) fn nanosecond_ranged(self) -> Nanosecond {
1748 let only_nanos = self.subsec_nanosecond_ranged() % t::NANOS_PER_MICRO;
1749 only_nanos.rinto()
1750 }
1751
1752 #[inline]
1753 pub(crate) fn subsec_nanosecond_ranged(self) -> SubsecNanosecond {
1754 self.subsec_nanosecond
1755 }
1756
1757 #[inline]
1758 pub(crate) fn until_nanoseconds(self, other: Time) -> t::SpanNanoseconds {
1759 let t1 = t::SpanNanoseconds::rfrom(self.to_nanosecond());
1760 let t2 = t::SpanNanoseconds::rfrom(other.to_nanosecond());
1761 t2 - t1
1762 }
1763
1764 /// Converts this time value to the number of seconds that has elapsed
1765 /// since `00:00:00`. This completely ignores seconds. Callers should
1766 /// likely ensure that the fractional second component is zero.
1767 ///
1768 /// The maximum possible value that can be returned represents the time
1769 /// `23:59:59`.
1770 #[inline]
1771 pub(crate) fn to_second(&self) -> CivilDaySecond {
1772 self.to_itime().map(|x| x.to_second().second).to_rint()
1773 }
1774
1775 /// Converts the given second to a time value. The second should correspond
1776 /// to the number of seconds that have elapsed since `00:00:00`. The
1777 /// fractional second component of the `Time` returned is always `0`.
1778 #[cfg_attr(feature = "perf-inline", inline(always))]
1779 pub(crate) fn from_second(second: CivilDaySecond) -> Time {
1780 let second = rangeint::composite!((second) => {
1781 ITimeSecond { second }
1782 });
1783 Time::from_itime(second.map(|x| x.to_time()))
1784 }
1785
1786 /// Converts this time value to the number of nanoseconds that has elapsed
1787 /// since `00:00:00.000000000`.
1788 ///
1789 /// The maximum possible value that can be returned represents the time
1790 /// `23:59:59.999999999`.
1791 #[inline]
1792 pub(crate) fn to_nanosecond(&self) -> CivilDayNanosecond {
1793 self.to_itime().map(|x| x.to_nanosecond().nanosecond).to_rint()
1794 }
1795
1796 /// Converts the given nanosecond to a time value. The nanosecond should
1797 /// correspond to the number of nanoseconds that have elapsed since
1798 /// `00:00:00.000000000`.
1799 #[cfg_attr(feature = "perf-inline", inline(always))]
1800 pub(crate) fn from_nanosecond(nanosecond: CivilDayNanosecond) -> Time {
1801 let nano = rangeint::composite!((nanosecond) => {
1802 ITimeNanosecond { nanosecond }
1803 });
1804 Time::from_itime(nano.map(|x| x.to_time()))
1805 }
1806
1807 #[inline]
1808 pub(crate) fn to_itime(&self) -> Composite<ITime> {
1809 rangeint::composite! {
1810 (
1811 hour = self.hour,
1812 minute = self.minute,
1813 second = self.second,
1814 subsec_nanosecond = self.subsec_nanosecond,
1815 ) => {
1816 ITime { hour, minute, second, subsec_nanosecond }
1817 }
1818 }
1819 }
1820
1821 #[inline]
1822 pub(crate) fn from_itime(itime: Composite<ITime>) -> Time {
1823 let (hour, minute, second, subsec_nanosecond) = rangeint::uncomposite!(
1824 itime,
1825 c => (c.hour, c.minute, c.second, c.subsec_nanosecond),
1826 );
1827 Time {
1828 hour: hour.to_rint(),
1829 minute: minute.to_rint(),
1830 second: second.to_rint(),
1831 subsec_nanosecond: subsec_nanosecond.to_rint(),
1832 }
1833 }
1834
1835 #[inline]
1836 pub(crate) const fn to_itime_const(&self) -> ITime {
1837 ITime {
1838 hour: self.hour.get_unchecked(),
1839 minute: self.minute.get_unchecked(),
1840 second: self.second.get_unchecked(),
1841 subsec_nanosecond: self.subsec_nanosecond.get_unchecked(),
1842 }
1843 }
1844}
1845
1846impl Default for Time {
1847 #[inline]
1848 fn default() -> Time {
1849 Time::midnight()
1850 }
1851}
1852
1853/// Converts a `Time` into a human readable time string.
1854///
1855/// (This `Debug` representation currently emits the same string as the
1856/// `Display` representation, but this is not a guarantee.)
1857///
1858/// Options currently supported:
1859///
1860/// * [`std::fmt::Formatter::precision`] can be set to control the precision
1861/// of the fractional second component.
1862///
1863/// # Example
1864///
1865/// ```
1866/// use jiff::civil::time;
1867///
1868/// let t = time(7, 0, 0, 123_000_000);
1869/// assert_eq!(format!("{t:.6?}"), "07:00:00.123000");
1870/// // Precision values greater than 9 are clamped to 9.
1871/// assert_eq!(format!("{t:.300?}"), "07:00:00.123000000");
1872/// // A precision of 0 implies the entire fractional
1873/// // component is always truncated.
1874/// assert_eq!(format!("{t:.0?}"), "07:00:00");
1875///
1876/// # Ok::<(), Box<dyn std::error::Error>>(())
1877/// ```
1878impl core::fmt::Debug for Time {
1879 #[inline]
1880 fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
1881 core::fmt::Display::fmt(self, f)
1882 }
1883}
1884
1885/// Converts a `Time` into an ISO 8601 compliant string.
1886///
1887/// # Formatting options supported
1888///
1889/// * [`std::fmt::Formatter::precision`] can be set to control the precision
1890/// of the fractional second component. When not set, the minimum precision
1891/// required to losslessly render the value is used.
1892///
1893/// # Example
1894///
1895/// ```
1896/// use jiff::civil::time;
1897///
1898/// // No fractional seconds:
1899/// let t = time(7, 0, 0, 0);
1900/// assert_eq!(format!("{t}"), "07:00:00");
1901///
1902/// // With fractional seconds:
1903/// let t = time(7, 0, 0, 123_000_000);
1904/// assert_eq!(format!("{t}"), "07:00:00.123");
1905///
1906/// # Ok::<(), Box<dyn std::error::Error>>(())
1907/// ```
1908///
1909/// # Example: setting the precision
1910///
1911/// ```
1912/// use jiff::civil::time;
1913///
1914/// let t = time(7, 0, 0, 123_000_000);
1915/// assert_eq!(format!("{t:.6}"), "07:00:00.123000");
1916/// // Precision values greater than 9 are clamped to 9.
1917/// assert_eq!(format!("{t:.300}"), "07:00:00.123000000");
1918/// // A precision of 0 implies the entire fractional
1919/// // component is always truncated.
1920/// assert_eq!(format!("{t:.0}"), "07:00:00");
1921///
1922/// # Ok::<(), Box<dyn std::error::Error>>(())
1923/// ```
1924impl core::fmt::Display for Time {
1925 #[inline]
1926 fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
1927 use crate::fmt::StdFmtWrite;
1928
1929 let precision =
1930 f.precision().map(|p| u8::try_from(p).unwrap_or(u8::MAX));
1931 temporal::DateTimePrinter::new()
1932 .precision(precision)
1933 .print_time(self, StdFmtWrite(f))
1934 .map_err(|_| core::fmt::Error)
1935 }
1936}
1937
1938impl core::str::FromStr for Time {
1939 type Err = Error;
1940
1941 #[inline]
1942 fn from_str(string: &str) -> Result<Time, Error> {
1943 DEFAULT_DATETIME_PARSER.parse_time(string)
1944 }
1945}
1946
1947/// Adds a span of time. This uses wrapping arithmetic.
1948///
1949/// For checked arithmetic, see [`Time::checked_add`].
1950impl core::ops::Add<Span> for Time {
1951 type Output = Time;
1952
1953 #[inline]
1954 fn add(self, rhs: Span) -> Time {
1955 self.wrapping_add(rhs)
1956 }
1957}
1958
1959/// Adds a span of time in place. This uses wrapping arithmetic.
1960///
1961/// For checked arithmetic, see [`Time::checked_add`].
1962impl core::ops::AddAssign<Span> for Time {
1963 #[inline]
1964 fn add_assign(&mut self, rhs: Span) {
1965 *self = *self + rhs;
1966 }
1967}
1968
1969/// Subtracts a span of time. This uses wrapping arithmetic.
1970///
1971/// For checked arithmetic, see [`Time::checked_sub`].
1972impl core::ops::Sub<Span> for Time {
1973 type Output = Time;
1974
1975 #[inline]
1976 fn sub(self, rhs: Span) -> Time {
1977 self.wrapping_sub(rhs)
1978 }
1979}
1980
1981/// Subtracts a span of time in place. This uses wrapping arithmetic.
1982///
1983/// For checked arithmetic, see [`Time::checked_sub`].
1984impl core::ops::SubAssign<Span> for Time {
1985 #[inline]
1986 fn sub_assign(&mut self, rhs: Span) {
1987 *self = *self - rhs;
1988 }
1989}
1990
1991/// Computes the span of time between two times.
1992///
1993/// This will return a negative span when the time being subtracted is greater.
1994///
1995/// Since this uses the default configuration for calculating a span between
1996/// two times (no rounding and largest units is hours), this will never panic
1997/// or fail in any way.
1998///
1999/// To configure the largest unit or enable rounding, use [`Time::since`].
2000impl core::ops::Sub for Time {
2001 type Output = Span;
2002
2003 #[inline]
2004 fn sub(self, rhs: Time) -> Span {
2005 self.since(rhs).expect("since never fails when given Time")
2006 }
2007}
2008
2009/// Adds a signed duration of time. This uses wrapping arithmetic.
2010///
2011/// For checked arithmetic, see [`Time::checked_add`].
2012impl core::ops::Add<SignedDuration> for Time {
2013 type Output = Time;
2014
2015 #[inline]
2016 fn add(self, rhs: SignedDuration) -> Time {
2017 self.wrapping_add(rhs)
2018 }
2019}
2020
2021/// Adds a signed duration of time in place. This uses wrapping arithmetic.
2022///
2023/// For checked arithmetic, see [`Time::checked_add`].
2024impl core::ops::AddAssign<SignedDuration> for Time {
2025 #[inline]
2026 fn add_assign(&mut self, rhs: SignedDuration) {
2027 *self = *self + rhs;
2028 }
2029}
2030
2031/// Subtracts a signed duration of time. This uses wrapping arithmetic.
2032///
2033/// For checked arithmetic, see [`Time::checked_sub`].
2034impl core::ops::Sub<SignedDuration> for Time {
2035 type Output = Time;
2036
2037 #[inline]
2038 fn sub(self, rhs: SignedDuration) -> Time {
2039 self.wrapping_sub(rhs)
2040 }
2041}
2042
2043/// Subtracts a signed duration of time in place. This uses wrapping arithmetic.
2044///
2045/// For checked arithmetic, see [`Time::checked_sub`].
2046impl core::ops::SubAssign<SignedDuration> for Time {
2047 #[inline]
2048 fn sub_assign(&mut self, rhs: SignedDuration) {
2049 *self = *self - rhs;
2050 }
2051}
2052
2053/// Adds an unsigned duration of time. This uses wrapping arithmetic.
2054///
2055/// For checked arithmetic, see [`Time::checked_add`].
2056impl core::ops::Add<UnsignedDuration> for Time {
2057 type Output = Time;
2058
2059 #[inline]
2060 fn add(self, rhs: UnsignedDuration) -> Time {
2061 self.wrapping_add(rhs)
2062 }
2063}
2064
2065/// Adds an unsigned duration of time in place. This uses wrapping arithmetic.
2066///
2067/// For checked arithmetic, see [`Time::checked_add`].
2068impl core::ops::AddAssign<UnsignedDuration> for Time {
2069 #[inline]
2070 fn add_assign(&mut self, rhs: UnsignedDuration) {
2071 *self = *self + rhs;
2072 }
2073}
2074
2075/// Subtracts an unsigned duration of time. This uses wrapping arithmetic.
2076///
2077/// For checked arithmetic, see [`Time::checked_sub`].
2078impl core::ops::Sub<UnsignedDuration> for Time {
2079 type Output = Time;
2080
2081 #[inline]
2082 fn sub(self, rhs: UnsignedDuration) -> Time {
2083 self.wrapping_sub(rhs)
2084 }
2085}
2086
2087/// Subtracts an unsigned duration of time in place. This uses wrapping
2088/// arithmetic.
2089///
2090/// For checked arithmetic, see [`Time::checked_sub`].
2091impl core::ops::SubAssign<UnsignedDuration> for Time {
2092 #[inline]
2093 fn sub_assign(&mut self, rhs: UnsignedDuration) {
2094 *self = *self - rhs;
2095 }
2096}
2097
2098impl From<DateTime> for Time {
2099 #[inline]
2100 fn from(dt: DateTime) -> Time {
2101 dt.time()
2102 }
2103}
2104
2105impl From<Zoned> for Time {
2106 #[inline]
2107 fn from(zdt: Zoned) -> Time {
2108 zdt.datetime().time()
2109 }
2110}
2111
2112impl<'a> From<&'a Zoned> for Time {
2113 #[inline]
2114 fn from(zdt: &'a Zoned) -> Time {
2115 zdt.datetime().time()
2116 }
2117}
2118
2119#[cfg(feature = "serde")]
2120impl serde::Serialize for Time {
2121 #[inline]
2122 fn serialize<S: serde::Serializer>(
2123 &self,
2124 serializer: S,
2125 ) -> Result<S::Ok, S::Error> {
2126 serializer.collect_str(self)
2127 }
2128}
2129
2130#[cfg(feature = "serde")]
2131impl<'de> serde::Deserialize<'de> for Time {
2132 #[inline]
2133 fn deserialize<D: serde::Deserializer<'de>>(
2134 deserializer: D,
2135 ) -> Result<Time, D::Error> {
2136 use serde::de;
2137
2138 struct TimeVisitor;
2139
2140 impl<'de> de::Visitor<'de> for TimeVisitor {
2141 type Value = Time;
2142
2143 fn expecting(
2144 &self,
2145 f: &mut core::fmt::Formatter,
2146 ) -> core::fmt::Result {
2147 f.write_str("a time string")
2148 }
2149
2150 #[inline]
2151 fn visit_bytes<E: de::Error>(
2152 self,
2153 value: &[u8],
2154 ) -> Result<Time, E> {
2155 DEFAULT_DATETIME_PARSER
2156 .parse_time(value)
2157 .map_err(de::Error::custom)
2158 }
2159
2160 #[inline]
2161 fn visit_str<E: de::Error>(self, value: &str) -> Result<Time, E> {
2162 self.visit_bytes(value.as_bytes())
2163 }
2164 }
2165
2166 deserializer.deserialize_str(TimeVisitor)
2167 }
2168}
2169
2170#[cfg(test)]
2171impl quickcheck::Arbitrary for Time {
2172 fn arbitrary(g: &mut quickcheck::Gen) -> Time {
2173 let hour = Hour::arbitrary(g);
2174 let minute = Minute::arbitrary(g);
2175 let second = Second::arbitrary(g);
2176 let subsec_nanosecond = SubsecNanosecond::arbitrary(g);
2177 Time::new_ranged(hour, minute, second, subsec_nanosecond)
2178 }
2179
2180 fn shrink(&self) -> alloc::boxed::Box<dyn Iterator<Item = Time>> {
2181 alloc::boxed::Box::new(
2182 (
2183 self.hour_ranged(),
2184 self.minute_ranged(),
2185 self.second_ranged(),
2186 self.subsec_nanosecond_ranged(),
2187 )
2188 .shrink()
2189 .map(
2190 |(hour, minute, second, subsec_nanosecond)| {
2191 Time::new_ranged(
2192 hour,
2193 minute,
2194 second,
2195 subsec_nanosecond,
2196 )
2197 },
2198 ),
2199 )
2200 }
2201}
2202
2203/// An iterator over periodic times, created by [`Time::series`].
2204///
2205/// It is exhausted when the next value would exceed a [`Span`] or [`Time`]
2206/// value.
2207#[derive(Clone, Debug)]
2208pub struct TimeSeries {
2209 start: Time,
2210 period: Span,
2211 step: i64,
2212}
2213
2214impl Iterator for TimeSeries {
2215 type Item = Time;
2216
2217 #[inline]
2218 fn next(&mut self) -> Option<Time> {
2219 let span = self.period.checked_mul(self.step).ok()?;
2220 self.step = self.step.checked_add(1)?;
2221 let time = self.start.checked_add(span).ok()?;
2222 Some(time)
2223 }
2224}
2225
2226/// Options for [`Time::checked_add`] and [`Time::checked_sub`].
2227///
2228/// This type provides a way to ergonomically add one of a few different
2229/// duration types to a [`Time`].
2230///
2231/// The main way to construct values of this type is with its `From` trait
2232/// implementations:
2233///
2234/// * `From<Span> for TimeArithmetic` adds (or subtracts) the given span to the
2235/// receiver time.
2236/// * `From<SignedDuration> for TimeArithmetic` adds (or subtracts)
2237/// the given signed duration to the receiver time.
2238/// * `From<std::time::Duration> for TimeArithmetic` adds (or subtracts)
2239/// the given unsigned duration to the receiver time.
2240///
2241/// # Example
2242///
2243/// ```
2244/// use std::time::Duration;
2245///
2246/// use jiff::{civil::time, SignedDuration, ToSpan};
2247///
2248/// let t = time(0, 0, 0, 0);
2249/// assert_eq!(t.checked_add(2.hours())?, time(2, 0, 0, 0));
2250/// assert_eq!(t.checked_add(SignedDuration::from_hours(2))?, time(2, 0, 0, 0));
2251/// assert_eq!(t.checked_add(Duration::from_secs(2 * 60 * 60))?, time(2, 0, 0, 0));
2252///
2253/// # Ok::<(), Box<dyn std::error::Error>>(())
2254/// ```
2255#[derive(Clone, Copy, Debug)]
2256pub struct TimeArithmetic {
2257 duration: Duration,
2258}
2259
2260impl TimeArithmetic {
2261 #[inline]
2262 fn wrapping_add(self, time: Time) -> Time {
2263 match self.duration {
2264 Duration::Span(span) => time.wrapping_add_span(span),
2265 Duration::Signed(sdur) => time.wrapping_add_signed_duration(sdur),
2266 Duration::Unsigned(udur) => {
2267 time.wrapping_add_unsigned_duration(udur)
2268 }
2269 }
2270 }
2271
2272 #[inline]
2273 fn wrapping_sub(self, time: Time) -> Time {
2274 match self.duration {
2275 Duration::Span(span) => time.wrapping_add_span(span.negate()),
2276 Duration::Signed(sdur) => {
2277 if let Some(sdur) = sdur.checked_neg() {
2278 time.wrapping_add_signed_duration(sdur)
2279 } else {
2280 let udur = UnsignedDuration::new(
2281 i64::MIN.unsigned_abs(),
2282 sdur.subsec_nanos().unsigned_abs(),
2283 );
2284 time.wrapping_add_unsigned_duration(udur)
2285 }
2286 }
2287 Duration::Unsigned(udur) => {
2288 time.wrapping_sub_unsigned_duration(udur)
2289 }
2290 }
2291 }
2292
2293 #[inline]
2294 fn checked_add(self, time: Time) -> Result<Time, Error> {
2295 match self.duration.to_signed()? {
2296 SDuration::Span(span) => time.checked_add_span(span),
2297 SDuration::Absolute(sdur) => time.checked_add_duration(sdur),
2298 }
2299 }
2300
2301 #[inline]
2302 fn checked_neg(self) -> Result<TimeArithmetic, Error> {
2303 let duration = self.duration.checked_neg()?;
2304 Ok(TimeArithmetic { duration })
2305 }
2306
2307 #[inline]
2308 fn is_negative(&self) -> bool {
2309 self.duration.is_negative()
2310 }
2311}
2312
2313impl From<Span> for TimeArithmetic {
2314 fn from(span: Span) -> TimeArithmetic {
2315 let duration = Duration::from(span);
2316 TimeArithmetic { duration }
2317 }
2318}
2319
2320impl From<SignedDuration> for TimeArithmetic {
2321 fn from(sdur: SignedDuration) -> TimeArithmetic {
2322 let duration = Duration::from(sdur);
2323 TimeArithmetic { duration }
2324 }
2325}
2326
2327impl From<UnsignedDuration> for TimeArithmetic {
2328 fn from(udur: UnsignedDuration) -> TimeArithmetic {
2329 let duration = Duration::from(udur);
2330 TimeArithmetic { duration }
2331 }
2332}
2333
2334impl<'a> From<&'a Span> for TimeArithmetic {
2335 fn from(span: &'a Span) -> TimeArithmetic {
2336 TimeArithmetic::from(*span)
2337 }
2338}
2339
2340impl<'a> From<&'a SignedDuration> for TimeArithmetic {
2341 fn from(sdur: &'a SignedDuration) -> TimeArithmetic {
2342 TimeArithmetic::from(*sdur)
2343 }
2344}
2345
2346impl<'a> From<&'a UnsignedDuration> for TimeArithmetic {
2347 fn from(udur: &'a UnsignedDuration) -> TimeArithmetic {
2348 TimeArithmetic::from(*udur)
2349 }
2350}
2351
2352/// Options for [`Time::since`] and [`Time::until`].
2353///
2354/// This type provides a way to configure the calculation of spans between two
2355/// [`Time`] values. In particular, both `Time::since` and `Time::until` accept
2356/// anything that implements `Into<TimeDifference>`. There are a few key trait
2357/// implementations that make this convenient:
2358///
2359/// * `From<Time> for TimeDifference` will construct a configuration consisting
2360/// of just the time. So for example, `time1.until(time2)` will return the span
2361/// from `time1` to `time2`.
2362/// * `From<DateTime> for TimeDifference` will construct a configuration
2363/// consisting of just the time from the given datetime. So for example,
2364/// `time.since(datetime)` returns the span from `datetime.time()` to `time`.
2365/// * `From<(Unit, Time)>` is a convenient way to specify the largest units
2366/// that should be present on the span returned. By default, the largest units
2367/// are hours. Using this trait implementation is equivalent to
2368/// `TimeDifference::new(time).largest(unit)`.
2369/// * `From<(Unit, DateTime)>` is like the one above, but with the time from
2370/// the given datetime.
2371///
2372/// One can also provide a `TimeDifference` value directly. Doing so
2373/// is necessary to use the rounding features of calculating a span. For
2374/// example, setting the smallest unit (defaults to [`Unit::Nanosecond`]), the
2375/// rounding mode (defaults to [`RoundMode::Trunc`]) and the rounding increment
2376/// (defaults to `1`). The defaults are selected such that no rounding occurs.
2377///
2378/// Rounding a span as part of calculating it is provided as a convenience.
2379/// Callers may choose to round the span as a distinct step via
2380/// [`Span::round`].
2381///
2382/// # Example
2383///
2384/// This example shows how to round a span between two datetimes to the nearest
2385/// half-hour, with ties breaking away from zero.
2386///
2387/// ```
2388/// use jiff::{civil::{Time, TimeDifference}, RoundMode, ToSpan, Unit};
2389///
2390/// let t1 = "08:14:00.123456789".parse::<Time>()?;
2391/// let t2 = "15:00".parse::<Time>()?;
2392/// let span = t1.until(
2393/// TimeDifference::new(t2)
2394/// .smallest(Unit::Minute)
2395/// .mode(RoundMode::HalfExpand)
2396/// .increment(30),
2397/// )?;
2398/// assert_eq!(span, 7.hours().fieldwise());
2399///
2400/// // One less minute, and because of the HalfExpand mode, the span would
2401/// // get rounded down.
2402/// let t2 = "14:59".parse::<Time>()?;
2403/// let span = t1.until(
2404/// TimeDifference::new(t2)
2405/// .smallest(Unit::Minute)
2406/// .mode(RoundMode::HalfExpand)
2407/// .increment(30),
2408/// )?;
2409/// assert_eq!(span, 6.hours().minutes(30).fieldwise());
2410///
2411/// # Ok::<(), Box<dyn std::error::Error>>(())
2412/// ```
2413#[derive(Clone, Copy, Debug)]
2414pub struct TimeDifference {
2415 time: Time,
2416 round: SpanRound<'static>,
2417}
2418
2419impl TimeDifference {
2420 /// Create a new default configuration for computing the span between
2421 /// the given time and some other time (specified as the receiver in
2422 /// [`Time::since`] or [`Time::until`]).
2423 #[inline]
2424 pub fn new(time: Time) -> TimeDifference {
2425 // We use truncation rounding by default since it seems that's
2426 // what is generally expected when computing the difference between
2427 // datetimes.
2428 //
2429 // See: https://github.com/tc39/proposal-temporal/issues/1122
2430 let round = SpanRound::new().mode(RoundMode::Trunc);
2431 TimeDifference { time, round }
2432 }
2433
2434 /// Set the smallest units allowed in the span returned.
2435 ///
2436 /// # Errors
2437 ///
2438 /// The smallest units must be no greater than the largest units. If this
2439 /// is violated, then computing a span with this configuration will result
2440 /// in an error.
2441 ///
2442 /// # Example
2443 ///
2444 /// This shows how to round a span between two times to units no less than
2445 /// seconds.
2446 ///
2447 /// ```
2448 /// use jiff::{civil::{Time, TimeDifference}, RoundMode, ToSpan, Unit};
2449 ///
2450 /// let t1 = "08:14:02.5001".parse::<Time>()?;
2451 /// let t2 = "08:30:03.0001".parse::<Time>()?;
2452 /// let span = t1.until(
2453 /// TimeDifference::new(t2)
2454 /// .smallest(Unit::Second)
2455 /// .mode(RoundMode::HalfExpand),
2456 /// )?;
2457 /// assert_eq!(span, 16.minutes().seconds(1).fieldwise());
2458 ///
2459 /// # Ok::<(), Box<dyn std::error::Error>>(())
2460 /// ```
2461 #[inline]
2462 pub fn smallest(self, unit: Unit) -> TimeDifference {
2463 TimeDifference { round: self.round.smallest(unit), ..self }
2464 }
2465
2466 /// Set the largest units allowed in the span returned.
2467 ///
2468 /// When a largest unit is not specified, computing a span between times
2469 /// behaves as if it were set to [`Unit::Hour`].
2470 ///
2471 /// # Errors
2472 ///
2473 /// The largest units, when set, must be at least as big as the smallest
2474 /// units (which defaults to [`Unit::Nanosecond`]). If this is violated,
2475 /// then computing a span with this configuration will result in an error.
2476 ///
2477 /// # Example
2478 ///
2479 /// This shows how to round a span between two times to units no
2480 /// bigger than seconds.
2481 ///
2482 /// ```
2483 /// use jiff::{civil::{Time, TimeDifference}, ToSpan, Unit};
2484 ///
2485 /// let t1 = "08:14".parse::<Time>()?;
2486 /// let t2 = "08:30".parse::<Time>()?;
2487 /// let span = t1.until(TimeDifference::new(t2).largest(Unit::Second))?;
2488 /// assert_eq!(span, 960.seconds().fieldwise());
2489 ///
2490 /// # Ok::<(), Box<dyn std::error::Error>>(())
2491 /// ```
2492 #[inline]
2493 pub fn largest(self, unit: Unit) -> TimeDifference {
2494 TimeDifference { round: self.round.largest(unit), ..self }
2495 }
2496
2497 /// Set the rounding mode.
2498 ///
2499 /// This defaults to [`RoundMode::Trunc`] since it's plausible that
2500 /// rounding "up" in the context of computing the span between two times
2501 /// could be surprising in a number of cases. The [`RoundMode::HalfExpand`]
2502 /// mode corresponds to typical rounding you might have learned about in
2503 /// school. But a variety of other rounding modes exist.
2504 ///
2505 /// # Example
2506 ///
2507 /// This shows how to always round "up" towards positive infinity.
2508 ///
2509 /// ```
2510 /// use jiff::{civil::{Time, TimeDifference}, RoundMode, ToSpan, Unit};
2511 ///
2512 /// let t1 = "08:10".parse::<Time>()?;
2513 /// let t2 = "08:11".parse::<Time>()?;
2514 /// let span = t1.until(
2515 /// TimeDifference::new(t2)
2516 /// .smallest(Unit::Hour)
2517 /// .mode(RoundMode::Ceil),
2518 /// )?;
2519 /// // Only one minute elapsed, but we asked to always round up!
2520 /// assert_eq!(span, 1.hour().fieldwise());
2521 ///
2522 /// // Since `Ceil` always rounds toward positive infinity, the behavior
2523 /// // flips for a negative span.
2524 /// let span = t1.since(
2525 /// TimeDifference::new(t2)
2526 /// .smallest(Unit::Hour)
2527 /// .mode(RoundMode::Ceil),
2528 /// )?;
2529 /// assert_eq!(span, 0.hour().fieldwise());
2530 ///
2531 /// # Ok::<(), Box<dyn std::error::Error>>(())
2532 /// ```
2533 #[inline]
2534 pub fn mode(self, mode: RoundMode) -> TimeDifference {
2535 TimeDifference { round: self.round.mode(mode), ..self }
2536 }
2537
2538 /// Set the rounding increment for the smallest unit.
2539 ///
2540 /// The default value is `1`. Other values permit rounding the smallest
2541 /// unit to the nearest integer increment specified. For example, if the
2542 /// smallest unit is set to [`Unit::Minute`], then a rounding increment of
2543 /// `30` would result in rounding in increments of a half hour. That is,
2544 /// the only minute value that could result would be `0` or `30`.
2545 ///
2546 /// # Errors
2547 ///
2548 /// The rounding increment must divide evenly into the next highest unit
2549 /// after the smallest unit configured (and must not be equivalent to it).
2550 /// For example, if the smallest unit is [`Unit::Nanosecond`], then *some*
2551 /// of the valid values for the rounding increment are `1`, `2`, `4`, `5`,
2552 /// `100` and `500`. Namely, any integer that divides evenly into `1,000`
2553 /// nanoseconds since there are `1,000` nanoseconds in the next highest
2554 /// unit (microseconds).
2555 ///
2556 /// The error will occur when computing the span, and not when setting
2557 /// the increment here.
2558 ///
2559 /// # Example
2560 ///
2561 /// This shows how to round the span between two times to the nearest 5
2562 /// minute increment.
2563 ///
2564 /// ```
2565 /// use jiff::{civil::{Time, TimeDifference}, RoundMode, ToSpan, Unit};
2566 ///
2567 /// let t1 = "08:19".parse::<Time>()?;
2568 /// let t2 = "12:52".parse::<Time>()?;
2569 /// let span = t1.until(
2570 /// TimeDifference::new(t2)
2571 /// .smallest(Unit::Minute)
2572 /// .increment(5)
2573 /// .mode(RoundMode::HalfExpand),
2574 /// )?;
2575 /// assert_eq!(span, 4.hour().minutes(35).fieldwise());
2576 ///
2577 /// # Ok::<(), Box<dyn std::error::Error>>(())
2578 /// ```
2579 #[inline]
2580 pub fn increment(self, increment: i64) -> TimeDifference {
2581 TimeDifference { round: self.round.increment(increment), ..self }
2582 }
2583
2584 /// Returns true if and only if this configuration could change the span
2585 /// via rounding.
2586 #[inline]
2587 fn rounding_may_change_span(&self) -> bool {
2588 self.round.rounding_may_change_span_ignore_largest()
2589 }
2590
2591 /// Returns the span of time from `t1` to the time in this configuration.
2592 /// The biggest units allowed are determined by the `smallest` and
2593 /// `largest` settings, but defaults to `Unit::Hour`.
2594 #[inline]
2595 fn until_with_largest_unit(&self, t1: Time) -> Result<Span, Error> {
2596 let t2 = self.time;
2597 if t1 == t2 {
2598 return Ok(Span::new());
2599 }
2600 let largest = self.round.get_largest().unwrap_or(Unit::Hour);
2601 if largest > Unit::Hour {
2602 return Err(err!(
2603 "rounding the span between two times must use hours \
2604 or smaller for its units, but found {units}",
2605 units = largest.plural(),
2606 ));
2607 }
2608 let start = t1.to_nanosecond();
2609 let end = t2.to_nanosecond();
2610 let span =
2611 Span::from_invariant_nanoseconds(largest, (end - start).rinto())
2612 .expect("difference in civil times is always in bounds");
2613 Ok(span)
2614 }
2615}
2616
2617impl From<Time> for TimeDifference {
2618 #[inline]
2619 fn from(time: Time) -> TimeDifference {
2620 TimeDifference::new(time)
2621 }
2622}
2623
2624impl From<DateTime> for TimeDifference {
2625 #[inline]
2626 fn from(dt: DateTime) -> TimeDifference {
2627 TimeDifference::from(Time::from(dt))
2628 }
2629}
2630
2631impl From<Zoned> for TimeDifference {
2632 #[inline]
2633 fn from(zdt: Zoned) -> TimeDifference {
2634 TimeDifference::from(Time::from(zdt))
2635 }
2636}
2637
2638impl<'a> From<&'a Zoned> for TimeDifference {
2639 #[inline]
2640 fn from(zdt: &'a Zoned) -> TimeDifference {
2641 TimeDifference::from(zdt.datetime())
2642 }
2643}
2644
2645impl From<(Unit, Time)> for TimeDifference {
2646 #[inline]
2647 fn from((largest, time): (Unit, Time)) -> TimeDifference {
2648 TimeDifference::from(time).largest(largest)
2649 }
2650}
2651
2652impl From<(Unit, DateTime)> for TimeDifference {
2653 #[inline]
2654 fn from((largest, dt): (Unit, DateTime)) -> TimeDifference {
2655 TimeDifference::from((largest, Time::from(dt)))
2656 }
2657}
2658
2659impl From<(Unit, Zoned)> for TimeDifference {
2660 #[inline]
2661 fn from((largest, zdt): (Unit, Zoned)) -> TimeDifference {
2662 TimeDifference::from((largest, Time::from(zdt)))
2663 }
2664}
2665
2666impl<'a> From<(Unit, &'a Zoned)> for TimeDifference {
2667 #[inline]
2668 fn from((largest, zdt): (Unit, &'a Zoned)) -> TimeDifference {
2669 TimeDifference::from((largest, zdt.datetime()))
2670 }
2671}
2672
2673/// Options for [`Time::round`].
2674///
2675/// This type provides a way to configure the rounding of a civil time.
2676/// In particular, `Time::round` accepts anything that implements the
2677/// `Into<TimeRound>` trait. There are some trait implementations that
2678/// therefore make calling `Time::round` in some common cases more ergonomic:
2679///
2680/// * `From<Unit> for TimeRound` will construct a rounding configuration that
2681/// rounds to the unit given. Specifically, `TimeRound::new().smallest(unit)`.
2682/// * `From<(Unit, i64)> for TimeRound` is like the one above, but also
2683/// specifies the rounding increment for [`TimeRound::increment`].
2684///
2685/// Note that in the default configuration, no rounding occurs.
2686///
2687/// # Example
2688///
2689/// This example shows how to round a time to the nearest second:
2690///
2691/// ```
2692/// use jiff::{civil::{Time, time}, Unit};
2693///
2694/// let t: Time = "16:24:59.5".parse()?;
2695/// assert_eq!(
2696/// t.round(Unit::Second)?,
2697/// // The second rounds up and causes minutes to increase.
2698/// time(16, 25, 0, 0),
2699/// );
2700///
2701/// # Ok::<(), Box<dyn std::error::Error>>(())
2702/// ```
2703///
2704/// The above makes use of the fact that `Unit` implements
2705/// `Into<TimeRound>`. If you want to change the rounding mode to, say,
2706/// truncation, then you'll need to construct a `TimeRound` explicitly
2707/// since there are no convenience `Into` trait implementations for
2708/// [`RoundMode`].
2709///
2710/// ```
2711/// use jiff::{civil::{Time, TimeRound, time}, RoundMode, Unit};
2712///
2713/// let t: Time = "2024-06-20 16:24:59.5".parse()?;
2714/// assert_eq!(
2715/// t.round(
2716/// TimeRound::new().smallest(Unit::Second).mode(RoundMode::Trunc),
2717/// )?,
2718/// // The second just gets truncated as if it wasn't there.
2719/// time(16, 24, 59, 0),
2720/// );
2721///
2722/// # Ok::<(), Box<dyn std::error::Error>>(())
2723/// ```
2724#[derive(Clone, Copy, Debug)]
2725pub struct TimeRound {
2726 smallest: Unit,
2727 mode: RoundMode,
2728 increment: i64,
2729}
2730
2731impl TimeRound {
2732 /// Create a new default configuration for rounding a [`Time`].
2733 #[inline]
2734 pub fn new() -> TimeRound {
2735 TimeRound {
2736 smallest: Unit::Nanosecond,
2737 mode: RoundMode::HalfExpand,
2738 increment: 1,
2739 }
2740 }
2741
2742 /// Set the smallest units allowed in the time returned after rounding.
2743 ///
2744 /// Any units below the smallest configured unit will be used, along with
2745 /// the rounding increment and rounding mode, to determine the value of the
2746 /// smallest unit. For example, when rounding `03:25:30` to the
2747 /// nearest minute, the `30` second unit will result in rounding the minute
2748 /// unit of `25` up to `26` and zeroing out everything below minutes.
2749 ///
2750 /// This defaults to [`Unit::Nanosecond`].
2751 ///
2752 /// # Errors
2753 ///
2754 /// The smallest units must be no greater than [`Unit::Hour`].
2755 ///
2756 /// # Example
2757 ///
2758 /// ```
2759 /// use jiff::{civil::{TimeRound, time}, Unit};
2760 ///
2761 /// let t = time(3, 25, 30, 0);
2762 /// assert_eq!(
2763 /// t.round(TimeRound::new().smallest(Unit::Minute))?,
2764 /// time(3, 26, 0, 0),
2765 /// );
2766 /// // Or, utilize the `From<Unit> for TimeRound` impl:
2767 /// assert_eq!(t.round(Unit::Minute)?, time(3, 26, 0, 0));
2768 ///
2769 /// # Ok::<(), Box<dyn std::error::Error>>(())
2770 /// ```
2771 #[inline]
2772 pub fn smallest(self, unit: Unit) -> TimeRound {
2773 TimeRound { smallest: unit, ..self }
2774 }
2775
2776 /// Set the rounding mode.
2777 ///
2778 /// This defaults to [`RoundMode::HalfExpand`], which rounds away from
2779 /// zero. It matches the kind of rounding you might have been taught in
2780 /// school.
2781 ///
2782 /// # Example
2783 ///
2784 /// This shows how to always round times up towards positive infinity.
2785 ///
2786 /// ```
2787 /// use jiff::{civil::{Time, TimeRound, time}, RoundMode, Unit};
2788 ///
2789 /// let t: Time = "03:25:01".parse()?;
2790 /// assert_eq!(
2791 /// t.round(
2792 /// TimeRound::new()
2793 /// .smallest(Unit::Minute)
2794 /// .mode(RoundMode::Ceil),
2795 /// )?,
2796 /// time(3, 26, 0, 0),
2797 /// );
2798 ///
2799 /// # Ok::<(), Box<dyn std::error::Error>>(())
2800 /// ```
2801 #[inline]
2802 pub fn mode(self, mode: RoundMode) -> TimeRound {
2803 TimeRound { mode, ..self }
2804 }
2805
2806 /// Set the rounding increment for the smallest unit.
2807 ///
2808 /// The default value is `1`. Other values permit rounding the smallest
2809 /// unit to the nearest integer increment specified. For example, if the
2810 /// smallest unit is set to [`Unit::Minute`], then a rounding increment of
2811 /// `30` would result in rounding in increments of a half hour. That is,
2812 /// the only minute value that could result would be `0` or `30`.
2813 ///
2814 /// # Errors
2815 ///
2816 /// The rounding increment must divide evenly into the
2817 /// next highest unit above the smallest unit set. The rounding increment
2818 /// must also not be equal to the next highest unit. For example, if the
2819 /// smallest unit is [`Unit::Nanosecond`], then *some* of the valid values
2820 /// for the rounding increment are `1`, `2`, `4`, `5`, `100` and `500`.
2821 /// Namely, any integer that divides evenly into `1,000` nanoseconds since
2822 /// there are `1,000` nanoseconds in the next highest unit (microseconds).
2823 ///
2824 /// # Example
2825 ///
2826 /// This example shows how to round a time to the nearest 10 minute
2827 /// increment.
2828 ///
2829 /// ```
2830 /// use jiff::{civil::{Time, TimeRound, time}, RoundMode, Unit};
2831 ///
2832 /// let t: Time = "03:24:59".parse()?;
2833 /// assert_eq!(t.round((Unit::Minute, 10))?, time(3, 20, 0, 0));
2834 ///
2835 /// # Ok::<(), Box<dyn std::error::Error>>(())
2836 /// ```
2837 #[inline]
2838 pub fn increment(self, increment: i64) -> TimeRound {
2839 TimeRound { increment, ..self }
2840 }
2841
2842 /// Does the actual rounding.
2843 pub(crate) fn round(&self, t: Time) -> Result<Time, Error> {
2844 let increment = increment::for_time(self.smallest, self.increment)?;
2845 let nanos = t.to_nanosecond();
2846 let rounded = self.mode.round_by_unit_in_nanoseconds(
2847 nanos,
2848 self.smallest,
2849 increment,
2850 );
2851 let limit =
2852 t::NoUnits128::rfrom(t::CivilDayNanosecond::MAX_SELF) + C(1);
2853 Ok(Time::from_nanosecond((rounded % limit).rinto()))
2854 }
2855}
2856
2857impl Default for TimeRound {
2858 #[inline]
2859 fn default() -> TimeRound {
2860 TimeRound::new()
2861 }
2862}
2863
2864impl From<Unit> for TimeRound {
2865 #[inline]
2866 fn from(unit: Unit) -> TimeRound {
2867 TimeRound::default().smallest(unit)
2868 }
2869}
2870
2871impl From<(Unit, i64)> for TimeRound {
2872 #[inline]
2873 fn from((unit, increment): (Unit, i64)) -> TimeRound {
2874 TimeRound::from(unit).increment(increment)
2875 }
2876}
2877
2878/// A builder for setting the fields on a [`Time`].
2879///
2880/// This builder is constructed via [`Time::with`].
2881///
2882/// # Example
2883///
2884/// Unlike [`Date`], a [`Time`] is valid for all possible valid values of its
2885/// fields. That is, there is no way for two valid field values to combine
2886/// into an invalid `Time`. So, for `Time`, this builder does have as much of
2887/// a benefit versus an API design with methods like `Time::with_hour` and
2888/// `Time::with_minute`. Nevertheless, this builder permits settings multiple
2889/// fields at the same time and performing only one validity check. Moreover,
2890/// this provides a consistent API with other date and time types in this
2891/// crate.
2892///
2893/// ```
2894/// use jiff::civil::time;
2895///
2896/// let t1 = time(0, 0, 24, 0);
2897/// let t2 = t1.with().hour(15).minute(30).millisecond(10).build()?;
2898/// assert_eq!(t2, time(15, 30, 24, 10_000_000));
2899///
2900/// # Ok::<(), Box<dyn std::error::Error>>(())
2901/// ```
2902#[derive(Clone, Copy, Debug)]
2903pub struct TimeWith {
2904 original: Time,
2905 hour: Option<i8>,
2906 minute: Option<i8>,
2907 second: Option<i8>,
2908 millisecond: Option<i16>,
2909 microsecond: Option<i16>,
2910 nanosecond: Option<i16>,
2911 subsec_nanosecond: Option<i32>,
2912}
2913
2914impl TimeWith {
2915 #[inline]
2916 fn new(original: Time) -> TimeWith {
2917 TimeWith {
2918 original,
2919 hour: None,
2920 minute: None,
2921 second: None,
2922 millisecond: None,
2923 microsecond: None,
2924 nanosecond: None,
2925 subsec_nanosecond: None,
2926 }
2927 }
2928
2929 /// Create a new `Time` from the fields set on this configuration.
2930 ///
2931 /// An error occurs when the fields combine to an invalid time. This only
2932 /// occurs when at least one field has an invalid value, or if at least
2933 /// one of `millisecond`, `microsecond` or `nanosecond` is set _and_
2934 /// `subsec_nanosecond` is set. Otherwise, if all fields are valid, then
2935 /// the entire `Time` is guaranteed to be valid.
2936 ///
2937 /// For any fields not set on this configuration, the values are taken from
2938 /// the [`Time`] that originally created this configuration. When no values
2939 /// are set, this routine is guaranteed to succeed and will always return
2940 /// the original time without modification.
2941 ///
2942 /// # Example
2943 ///
2944 /// This creates a time but with its fractional nanosecond component
2945 /// stripped:
2946 ///
2947 /// ```
2948 /// use jiff::civil::time;
2949 ///
2950 /// let t = time(14, 27, 30, 123_456_789);
2951 /// assert_eq!(t.with().subsec_nanosecond(0).build()?, time(14, 27, 30, 0));
2952 ///
2953 /// # Ok::<(), Box<dyn std::error::Error>>(())
2954 /// ```
2955 ///
2956 /// # Example: error for invalid time
2957 ///
2958 /// ```
2959 /// use jiff::civil::time;
2960 ///
2961 /// let t = time(14, 27, 30, 0);
2962 /// assert!(t.with().hour(24).build().is_err());
2963 /// ```
2964 ///
2965 /// # Example: error for ambiguous sub-second value
2966 ///
2967 /// ```
2968 /// use jiff::civil::time;
2969 ///
2970 /// let t = time(14, 27, 30, 123_456_789);
2971 /// // Setting both the individual sub-second fields and the entire
2972 /// // fractional component could lead to a misleading configuration. So
2973 /// // if it's done, it results in an error in all cases. Callers must
2974 /// // choose one or the other.
2975 /// assert!(t.with().microsecond(1).subsec_nanosecond(0).build().is_err());
2976 /// ```
2977 #[inline]
2978 pub fn build(self) -> Result<Time, Error> {
2979 let hour = match self.hour {
2980 None => self.original.hour_ranged(),
2981 Some(hour) => Hour::try_new("hour", hour)?,
2982 };
2983 let minute = match self.minute {
2984 None => self.original.minute_ranged(),
2985 Some(minute) => Minute::try_new("minute", minute)?,
2986 };
2987 let second = match self.second {
2988 None => self.original.second_ranged(),
2989 Some(second) => Second::try_new("second", second)?,
2990 };
2991 let millisecond = match self.millisecond {
2992 None => self.original.millisecond_ranged(),
2993 Some(millisecond) => {
2994 Millisecond::try_new("millisecond", millisecond)?
2995 }
2996 };
2997 let microsecond = match self.microsecond {
2998 None => self.original.microsecond_ranged(),
2999 Some(microsecond) => {
3000 Microsecond::try_new("microsecond", microsecond)?
3001 }
3002 };
3003 let nanosecond = match self.nanosecond {
3004 None => self.original.nanosecond_ranged(),
3005 Some(nanosecond) => Nanosecond::try_new("nanosecond", nanosecond)?,
3006 };
3007 let subsec_nanosecond = match self.subsec_nanosecond {
3008 None => self.original.subsec_nanosecond_ranged(),
3009 Some(subsec_nanosecond) => {
3010 if self.millisecond.is_some() {
3011 return Err(err!(
3012 "cannot set both TimeWith::millisecond \
3013 and TimeWith::subsec_nanosecond",
3014 ));
3015 }
3016 if self.microsecond.is_some() {
3017 return Err(err!(
3018 "cannot set both TimeWith::microsecond \
3019 and TimeWith::subsec_nanosecond",
3020 ));
3021 }
3022 if self.nanosecond.is_some() {
3023 return Err(err!(
3024 "cannot set both TimeWith::nanosecond \
3025 and TimeWith::subsec_nanosecond",
3026 ));
3027 }
3028 SubsecNanosecond::try_new(
3029 "subsec_nanosecond",
3030 subsec_nanosecond,
3031 )?
3032 }
3033 };
3034 if self.subsec_nanosecond.is_some() {
3035 Ok(Time::new_ranged(hour, minute, second, subsec_nanosecond))
3036 } else {
3037 Ok(Time::new_ranged(hour, minute, second, C(0))
3038 .with_subsec_parts_ranged(
3039 millisecond,
3040 microsecond,
3041 nanosecond,
3042 ))
3043 }
3044 }
3045
3046 /// Set the hour field on a [`Time`].
3047 ///
3048 /// One can access this value via [`Time::hour`].
3049 ///
3050 /// This overrides any previous hour settings.
3051 ///
3052 /// # Errors
3053 ///
3054 /// This returns an error when [`TimeWith::build`] is called if the given
3055 /// hour is outside the range `0..=23`.
3056 ///
3057 /// # Example
3058 ///
3059 /// ```
3060 /// use jiff::civil::time;
3061 ///
3062 /// let t1 = time(15, 21, 59, 0);
3063 /// assert_eq!(t1.hour(), 15);
3064 /// let t2 = t1.with().hour(3).build()?;
3065 /// assert_eq!(t2.hour(), 3);
3066 ///
3067 /// # Ok::<(), Box<dyn std::error::Error>>(())
3068 /// ```
3069 #[inline]
3070 pub fn hour(self, hour: i8) -> TimeWith {
3071 TimeWith { hour: Some(hour), ..self }
3072 }
3073
3074 /// Set the minute field on a [`Time`].
3075 ///
3076 /// One can access this value via [`Time::minute`].
3077 ///
3078 /// This overrides any previous minute settings.
3079 ///
3080 /// # Errors
3081 ///
3082 /// This returns an error when [`TimeWith::build`] is called if the given
3083 /// minute is outside the range `0..=59`.
3084 ///
3085 /// # Example
3086 ///
3087 /// ```
3088 /// use jiff::civil::time;
3089 ///
3090 /// let t1 = time(15, 21, 59, 0);
3091 /// assert_eq!(t1.minute(), 21);
3092 /// let t2 = t1.with().minute(3).build()?;
3093 /// assert_eq!(t2.minute(), 3);
3094 ///
3095 /// # Ok::<(), Box<dyn std::error::Error>>(())
3096 /// ```
3097 #[inline]
3098 pub fn minute(self, minute: i8) -> TimeWith {
3099 TimeWith { minute: Some(minute), ..self }
3100 }
3101
3102 /// Set the second field on a [`Time`].
3103 ///
3104 /// One can access this value via [`Time::second`].
3105 ///
3106 /// This overrides any previous second settings.
3107 ///
3108 /// # Errors
3109 ///
3110 /// This returns an error when [`TimeWith::build`] is called if the given
3111 /// second is outside the range `0..=59`.
3112 ///
3113 /// # Example
3114 ///
3115 /// ```
3116 /// use jiff::civil::time;
3117 ///
3118 /// let t1 = time(15, 21, 59, 0);
3119 /// assert_eq!(t1.second(), 59);
3120 /// let t2 = t1.with().second(3).build()?;
3121 /// assert_eq!(t2.second(), 3);
3122 ///
3123 /// # Ok::<(), Box<dyn std::error::Error>>(())
3124 /// ```
3125 #[inline]
3126 pub fn second(self, second: i8) -> TimeWith {
3127 TimeWith { second: Some(second), ..self }
3128 }
3129
3130 /// Set the millisecond field on a [`Time`].
3131 ///
3132 /// One can access this value via [`Time::millisecond`].
3133 ///
3134 /// This overrides any previous millisecond settings.
3135 ///
3136 /// Note that this only sets the millisecond component. It does
3137 /// not change the microsecond or nanosecond components. To set
3138 /// the fractional second component to nanosecond precision, use
3139 /// [`TimeWith::subsec_nanosecond`].
3140 ///
3141 /// # Errors
3142 ///
3143 /// This returns an error when [`TimeWith::build`] is called if the given
3144 /// millisecond is outside the range `0..=999`, or if both this and
3145 /// [`TimeWith::subsec_nanosecond`] are set.
3146 ///
3147 /// # Example
3148 ///
3149 /// This shows the relationship between [`Time::millisecond`] and
3150 /// [`Time::subsec_nanosecond`]:
3151 ///
3152 /// ```
3153 /// use jiff::civil::time;
3154 ///
3155 /// let t = time(15, 21, 35, 0).with().millisecond(123).build()?;
3156 /// assert_eq!(t.subsec_nanosecond(), 123_000_000);
3157 ///
3158 /// # Ok::<(), Box<dyn std::error::Error>>(())
3159 /// ```
3160 #[inline]
3161 pub fn millisecond(self, millisecond: i16) -> TimeWith {
3162 TimeWith { millisecond: Some(millisecond), ..self }
3163 }
3164
3165 /// Set the microsecond field on a [`Time`].
3166 ///
3167 /// One can access this value via [`Time::microsecond`].
3168 ///
3169 /// This overrides any previous microsecond settings.
3170 ///
3171 /// Note that this only sets the microsecond component. It does
3172 /// not change the millisecond or nanosecond components. To set
3173 /// the fractional second component to nanosecond precision, use
3174 /// [`TimeWith::subsec_nanosecond`].
3175 ///
3176 /// # Errors
3177 ///
3178 /// This returns an error when [`TimeWith::build`] is called if the given
3179 /// microsecond is outside the range `0..=999`, or if both this and
3180 /// [`TimeWith::subsec_nanosecond`] are set.
3181 ///
3182 /// # Example
3183 ///
3184 /// This shows the relationship between [`Time::microsecond`] and
3185 /// [`Time::subsec_nanosecond`]:
3186 ///
3187 /// ```
3188 /// use jiff::civil::time;
3189 ///
3190 /// let t = time(15, 21, 35, 0).with().microsecond(123).build()?;
3191 /// assert_eq!(t.subsec_nanosecond(), 123_000);
3192 ///
3193 /// # Ok::<(), Box<dyn std::error::Error>>(())
3194 /// ```
3195 #[inline]
3196 pub fn microsecond(self, microsecond: i16) -> TimeWith {
3197 TimeWith { microsecond: Some(microsecond), ..self }
3198 }
3199
3200 /// Set the nanosecond field on a [`Time`].
3201 ///
3202 /// One can access this value via [`Time::nanosecond`].
3203 ///
3204 /// This overrides any previous nanosecond settings.
3205 ///
3206 /// Note that this only sets the nanosecond component. It does
3207 /// not change the millisecond or microsecond components. To set
3208 /// the fractional second component to nanosecond precision, use
3209 /// [`TimeWith::subsec_nanosecond`].
3210 ///
3211 /// # Errors
3212 ///
3213 /// This returns an error when [`TimeWith::build`] is called if the given
3214 /// nanosecond is outside the range `0..=999`, or if both this and
3215 /// [`TimeWith::subsec_nanosecond`] are set.
3216 ///
3217 /// # Example
3218 ///
3219 /// This shows the relationship between [`Time::nanosecond`] and
3220 /// [`Time::subsec_nanosecond`]:
3221 ///
3222 /// ```
3223 /// use jiff::civil::time;
3224 ///
3225 /// let t = time(15, 21, 35, 0).with().nanosecond(123).build()?;
3226 /// assert_eq!(t.subsec_nanosecond(), 123);
3227 ///
3228 /// # Ok::<(), Box<dyn std::error::Error>>(())
3229 /// ```
3230 #[inline]
3231 pub fn nanosecond(self, nanosecond: i16) -> TimeWith {
3232 TimeWith { nanosecond: Some(nanosecond), ..self }
3233 }
3234
3235 /// Set the subsecond nanosecond field on a [`Time`].
3236 ///
3237 /// If you want to access this value on `Time`, then use
3238 /// [`Time::subsec_nanosecond`].
3239 ///
3240 /// This overrides any previous subsecond nanosecond settings.
3241 ///
3242 /// Note that this sets the entire fractional second component to
3243 /// nanosecond precision, and overrides any individual millisecond,
3244 /// microsecond or nanosecond settings. To set individual components,
3245 /// use [`TimeWith::millisecond`], [`TimeWith::microsecond`] or
3246 /// [`TimeWith::nanosecond`].
3247 ///
3248 /// # Errors
3249 ///
3250 /// This returns an error when [`TimeWith::build`] is called if the given
3251 /// subsecond nanosecond is outside the range `0..=999,999,999`, or if both
3252 /// this and one of [`TimeWith::millisecond`], [`TimeWith::microsecond`] or
3253 /// [`TimeWith::nanosecond`] are set.
3254 ///
3255 /// # Example
3256 ///
3257 /// This shows the relationship between constructing a `Time` value with
3258 /// subsecond nanoseconds and its individual subsecond fields:
3259 ///
3260 /// ```
3261 /// use jiff::civil::time;
3262 ///
3263 /// let t1 = time(15, 21, 35, 0);
3264 /// let t2 = t1.with().subsec_nanosecond(123_456_789).build()?;
3265 /// assert_eq!(t2.millisecond(), 123);
3266 /// assert_eq!(t2.microsecond(), 456);
3267 /// assert_eq!(t2.nanosecond(), 789);
3268 ///
3269 /// # Ok::<(), Box<dyn std::error::Error>>(())
3270 /// ```
3271 #[inline]
3272 pub fn subsec_nanosecond(self, subsec_nanosecond: i32) -> TimeWith {
3273 TimeWith { subsec_nanosecond: Some(subsec_nanosecond), ..self }
3274 }
3275}
3276
3277#[cfg(test)]
3278mod tests {
3279 use std::io::Cursor;
3280
3281 use crate::{civil::time, span::span_eq, ToSpan};
3282
3283 use super::*;
3284
3285 #[test]
3286 fn min() {
3287 let t = Time::MIN;
3288 assert_eq!(t.hour(), 0);
3289 assert_eq!(t.minute(), 0);
3290 assert_eq!(t.second(), 0);
3291 assert_eq!(t.subsec_nanosecond(), 0);
3292 }
3293
3294 #[test]
3295 fn max() {
3296 let t = Time::MAX;
3297 assert_eq!(t.hour(), 23);
3298 assert_eq!(t.minute(), 59);
3299 assert_eq!(t.second(), 59);
3300 assert_eq!(t.subsec_nanosecond(), 999_999_999);
3301 }
3302
3303 #[test]
3304 fn invalid() {
3305 assert!(Time::new(24, 0, 0, 0).is_err());
3306 assert!(Time::new(23, 60, 0, 0).is_err());
3307 assert!(Time::new(23, 59, 60, 0).is_err());
3308 assert!(Time::new(23, 59, 61, 0).is_err());
3309 assert!(Time::new(-1, 0, 0, 0).is_err());
3310 assert!(Time::new(0, -1, 0, 0).is_err());
3311 assert!(Time::new(0, 0, -1, 0).is_err());
3312
3313 assert!(Time::new(0, 0, 0, 1_000_000_000).is_err());
3314 assert!(Time::new(0, 0, 0, -1).is_err());
3315 assert!(Time::new(23, 59, 59, 1_000_000_000).is_err());
3316 assert!(Time::new(23, 59, 59, -1).is_err());
3317 }
3318
3319 #[test]
3320 fn rounding_cross_midnight() {
3321 let t1 = time(23, 59, 59, 999_999_999);
3322
3323 let t2 = t1.round(Unit::Nanosecond).unwrap();
3324 assert_eq!(t2, t1);
3325
3326 let t2 = t1.round(Unit::Millisecond).unwrap();
3327 assert_eq!(t2, time(0, 0, 0, 0));
3328
3329 let t2 = t1.round(Unit::Microsecond).unwrap();
3330 assert_eq!(t2, time(0, 0, 0, 0));
3331
3332 let t2 = t1.round(Unit::Millisecond).unwrap();
3333 assert_eq!(t2, time(0, 0, 0, 0));
3334
3335 let t2 = t1.round(Unit::Second).unwrap();
3336 assert_eq!(t2, time(0, 0, 0, 0));
3337
3338 let t2 = t1.round(Unit::Minute).unwrap();
3339 assert_eq!(t2, time(0, 0, 0, 0));
3340
3341 let t2 = t1.round(Unit::Hour).unwrap();
3342 assert_eq!(t2, time(0, 0, 0, 0));
3343
3344 let t1 = time(22, 15, 0, 0);
3345 assert_eq!(
3346 time(22, 30, 0, 0),
3347 t1.round(TimeRound::new().smallest(Unit::Minute).increment(30))
3348 .unwrap()
3349 );
3350 }
3351
3352 #[cfg(not(miri))]
3353 quickcheck::quickcheck! {
3354 fn prop_ordering_same_as_civil_nanosecond(
3355 civil_nanosecond1: CivilDayNanosecond,
3356 civil_nanosecond2: CivilDayNanosecond
3357 ) -> bool {
3358 let t1 = Time::from_nanosecond(civil_nanosecond1);
3359 let t2 = Time::from_nanosecond(civil_nanosecond2);
3360 t1.cmp(&t2) == civil_nanosecond1.cmp(&civil_nanosecond2)
3361 }
3362
3363 fn prop_checked_add_then_sub(
3364 time: Time,
3365 nano_span: CivilDayNanosecond
3366 ) -> quickcheck::TestResult {
3367 let span = Span::new().nanoseconds(nano_span.get());
3368 let Ok(sum) = time.checked_add(span) else {
3369 return quickcheck::TestResult::discard()
3370 };
3371 let diff = sum.checked_sub(span).unwrap();
3372 quickcheck::TestResult::from_bool(time == diff)
3373 }
3374
3375 fn prop_wrapping_add_then_sub(
3376 time: Time,
3377 nano_span: CivilDayNanosecond
3378 ) -> bool {
3379 let span = Span::new().nanoseconds(nano_span.get());
3380 let sum = time.wrapping_add(span);
3381 let diff = sum.wrapping_sub(span);
3382 time == diff
3383 }
3384
3385 fn prop_checked_add_equals_wrapping_add(
3386 time: Time,
3387 nano_span: CivilDayNanosecond
3388 ) -> quickcheck::TestResult {
3389 let span = Span::new().nanoseconds(nano_span.get());
3390 let Ok(sum_checked) = time.checked_add(span) else {
3391 return quickcheck::TestResult::discard()
3392 };
3393 let sum_wrapped = time.wrapping_add(span);
3394 quickcheck::TestResult::from_bool(sum_checked == sum_wrapped)
3395 }
3396
3397 fn prop_checked_sub_equals_wrapping_sub(
3398 time: Time,
3399 nano_span: CivilDayNanosecond
3400 ) -> quickcheck::TestResult {
3401 let span = Span::new().nanoseconds(nano_span.get());
3402 let Ok(diff_checked) = time.checked_sub(span) else {
3403 return quickcheck::TestResult::discard()
3404 };
3405 let diff_wrapped = time.wrapping_sub(span);
3406 quickcheck::TestResult::from_bool(diff_checked == diff_wrapped)
3407 }
3408
3409 fn prop_until_then_add(t1: Time, t2: Time) -> bool {
3410 let span = t1.until(t2).unwrap();
3411 t1.checked_add(span).unwrap() == t2
3412 }
3413
3414 fn prop_until_then_sub(t1: Time, t2: Time) -> bool {
3415 let span = t1.until(t2).unwrap();
3416 t2.checked_sub(span).unwrap() == t1
3417 }
3418
3419 fn prop_since_then_add(t1: Time, t2: Time) -> bool {
3420 let span = t1.since(t2).unwrap();
3421 t2.checked_add(span).unwrap() == t1
3422 }
3423
3424 fn prop_since_then_sub(t1: Time, t2: Time) -> bool {
3425 let span = t1.since(t2).unwrap();
3426 t1.checked_sub(span).unwrap() == t2
3427 }
3428
3429 fn prop_until_is_since_negated(t1: Time, t2: Time) -> bool {
3430 t1.until(t2).unwrap().get_nanoseconds()
3431 == t1.since(t2).unwrap().negate().get_nanoseconds()
3432 }
3433 }
3434
3435 #[test]
3436 fn overflowing_add() {
3437 let t1 = time(23, 30, 0, 0);
3438 let (t2, span) = t1.overflowing_add(5.hours()).unwrap();
3439 assert_eq!(t2, time(4, 30, 0, 0));
3440 span_eq!(span, 1.days());
3441 }
3442
3443 #[test]
3444 fn overflowing_add_overflows() {
3445 let t1 = time(23, 30, 0, 0);
3446 let span = Span::new()
3447 .hours(t::SpanHours::MAX_REPR)
3448 .minutes(t::SpanMinutes::MAX_REPR)
3449 .seconds(t::SpanSeconds::MAX_REPR)
3450 .milliseconds(t::SpanMilliseconds::MAX_REPR)
3451 .microseconds(t::SpanMicroseconds::MAX_REPR)
3452 .nanoseconds(t::SpanNanoseconds::MAX_REPR);
3453 assert!(t1.overflowing_add(span).is_err());
3454 }
3455
3456 #[test]
3457 fn time_size() {
3458 #[cfg(debug_assertions)]
3459 {
3460 assert_eq!(24, core::mem::size_of::<Time>());
3461 }
3462 #[cfg(not(debug_assertions))]
3463 {
3464 assert_eq!(8, core::mem::size_of::<Time>());
3465 }
3466 }
3467
3468 // This test checks that a wrapping subtraction with the minimum signed
3469 // duration is as expected.
3470 #[test]
3471 fn wrapping_sub_signed_duration_min() {
3472 let max = -SignedDuration::MIN.as_nanos();
3473 let got = time(15, 30, 8, 999_999_999).to_nanosecond();
3474 let expected = max.rem_euclid(t::NANOS_PER_CIVIL_DAY.bound());
3475 assert_eq!(i128::from(got.get()), expected);
3476 }
3477
3478 // This test checks that a wrapping subtraction with the maximum signed
3479 // duration is as expected.
3480 #[test]
3481 fn wrapping_sub_signed_duration_max() {
3482 let max = -SignedDuration::MAX.as_nanos();
3483 let got = time(8, 29, 52, 1).to_nanosecond();
3484 let expected = max.rem_euclid(t::NANOS_PER_CIVIL_DAY.bound());
3485 assert_eq!(i128::from(got.get()), expected);
3486 }
3487
3488 // This test checks that a wrapping subtraction with the maximum unsigned
3489 // duration is as expected.
3490 #[test]
3491 fn wrapping_sub_unsigned_duration_max() {
3492 let max =
3493 -i128::try_from(std::time::Duration::MAX.as_nanos()).unwrap();
3494 let got = time(16, 59, 44, 1).to_nanosecond();
3495 let expected = max.rem_euclid(t::NANOS_PER_CIVIL_DAY.bound());
3496 assert_eq!(i128::from(got.get()), expected);
3497 }
3498
3499 /// # `serde` deserializer compatibility test
3500 ///
3501 /// Serde YAML used to be unable to deserialize `jiff` types,
3502 /// as deserializing from bytes is not supported by the deserializer.
3503 ///
3504 /// - <https://github.com/BurntSushi/jiff/issues/138>
3505 /// - <https://github.com/BurntSushi/jiff/discussions/148>
3506 #[test]
3507 fn civil_time_deserialize_yaml() {
3508 let expected = time(16, 35, 4, 987654321);
3509
3510 let deserialized: Time =
3511 serde_yaml::from_str("16:35:04.987654321").unwrap();
3512
3513 assert_eq!(deserialized, expected);
3514
3515 let deserialized: Time =
3516 serde_yaml::from_slice("16:35:04.987654321".as_bytes()).unwrap();
3517
3518 assert_eq!(deserialized, expected);
3519
3520 let cursor = Cursor::new(b"16:35:04.987654321");
3521 let deserialized: Time = serde_yaml::from_reader(cursor).unwrap();
3522
3523 assert_eq!(deserialized, expected);
3524 }
3525}