ndarray/numeric/
impl_float_maths.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
// Element-wise methods for ndarray

#[cfg(feature = "std")]
use num_traits::Float;

use crate::imp_prelude::*;

#[cfg(feature = "std")]
macro_rules! boolean_ops {
    ($(#[$meta1:meta])* fn $func:ident
    $(#[$meta2:meta])* fn $all:ident
    $(#[$meta3:meta])* fn $any:ident) => {
        $(#[$meta1])*
        #[must_use = "method returns a new array and does not mutate the original value"]
        pub fn $func(&self) -> Array<bool, D> {
            self.mapv(A::$func)
        }
        $(#[$meta2])*
        #[must_use = "method returns a new boolean value and does not mutate the original value"]
        pub fn $all(&self) -> bool {
            $crate::Zip::from(self).all(|&elt| !elt.$func())
        }
        $(#[$meta3])*
        #[must_use = "method returns a new boolean value and does not mutate the original value"]
        pub fn $any(&self) -> bool {
            !self.$all()
        }
    };
}

#[cfg(feature = "std")]
macro_rules! unary_ops {
    ($($(#[$meta:meta])* fn $id:ident)+) => {
        $($(#[$meta])*
        #[must_use = "method returns a new array and does not mutate the original value"]
        pub fn $id(&self) -> Array<A, D> {
            self.mapv(A::$id)
        })+
    };
}

#[cfg(feature = "std")]
macro_rules! binary_ops {
    ($($(#[$meta:meta])* fn $id:ident($ty:ty))+) => {
        $($(#[$meta])*
        #[must_use = "method returns a new array and does not mutate the original value"]
        pub fn $id(&self, rhs: $ty) -> Array<A, D> {
            self.mapv(|v| A::$id(v, rhs))
        })+
    };
}

/// # Element-wise methods for float arrays
///
/// Element-wise math functions for any array type that contains float number.
#[cfg(feature = "std")]
impl<A, S, D> ArrayBase<S, D>
where
    A: 'static + Float,
    S: Data<Elem = A>,
    D: Dimension,
{
    boolean_ops! {
        /// If the number is `NaN` (not a number), then `true` is returned for each element.
        fn is_nan
        /// Return `true` if all elements are `NaN` (not a number).
        fn is_all_nan
        /// Return `true` if any element is `NaN` (not a number).
        fn is_any_nan
    }
    boolean_ops! {
        /// If the number is infinity, then `true` is returned for each element.
        fn is_infinite
        /// Return `true` if all elements are infinity.
        fn is_all_infinite
        /// Return `true` if any element is infinity.
        fn is_any_infinite
    }
    unary_ops! {
        /// The largest integer less than or equal to each element.
        fn floor
        /// The smallest integer less than or equal to each element.
        fn ceil
        /// The nearest integer of each element.
        fn round
        /// The integer part of each element.
        fn trunc
        /// The fractional part of each element.
        fn fract
        /// Absolute of each element.
        fn abs
        /// Sign number of each element.
        ///
        /// + `1.0` for all positive numbers.
        /// + `-1.0` for all negative numbers.
        /// + `NaN` for all `NaN` (not a number).
        fn signum
        /// The reciprocal (inverse) of each element, `1/x`.
        fn recip
        /// Square root of each element.
        fn sqrt
        /// `e^x` of each element (exponential function).
        fn exp
        /// `2^x` of each element.
        fn exp2
        /// Natural logarithm of each element.
        fn ln
        /// Base 2 logarithm of each element.
        fn log2
        /// Base 10 logarithm of each element.
        fn log10
        /// Cubic root of each element.
        fn cbrt
        /// Sine of each element (in radians).
        fn sin
        /// Cosine of each element (in radians).
        fn cos
        /// Tangent of each element (in radians).
        fn tan
        /// Converts radians to degrees for each element.
        fn to_degrees
        /// Converts degrees to radians for each element.
        fn to_radians
    }
    binary_ops! {
        /// Integer power of each element.
        ///
        /// This function is generally faster than using float power.
        fn powi(i32)
        /// Float power of each element.
        fn powf(A)
        /// Logarithm of each element with respect to an arbitrary base.
        fn log(A)
        /// The positive difference between given number and each element.
        fn abs_sub(A)
    }

    /// Square (two powers) of each element.
    #[must_use = "method returns a new array and does not mutate the original value"]
    pub fn pow2(&self) -> Array<A, D>
    {
        self.mapv(|v: A| v * v)
    }
}

impl<A, S, D> ArrayBase<S, D>
where
    A: 'static + PartialOrd + Clone,
    S: Data<Elem = A>,
    D: Dimension,
{
    /// Limit the values for each element, similar to NumPy's `clip` function.
    ///
    /// ```
    /// use ndarray::array;
    ///
    /// let a = array![0., 1., 2., 3., 4., 5., 6., 7., 8., 9.];
    /// assert_eq!(a.clamp(1., 8.), array![1., 1., 2., 3., 4., 5., 6., 7., 8., 8.]);
    /// assert_eq!(a.clamp(3., 6.), array![3., 3., 3., 3., 4., 5., 6., 6., 6., 6.]);
    /// ```
    ///
    /// # Panics
    ///
    /// Panics if `!(min <= max)`.
    pub fn clamp(&self, min: A, max: A) -> Array<A, D>
    {
        assert!(min <= max, "min must be less than or equal to max");
        self.mapv(|a| num_traits::clamp(a, min.clone(), max.clone()))
    }
}