ndarray/numeric/impl_float_maths.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
// Element-wise methods for ndarray
#[cfg(feature = "std")]
use num_traits::Float;
use crate::imp_prelude::*;
#[cfg(feature = "std")]
macro_rules! boolean_ops {
($(#[$meta1:meta])* fn $func:ident
$(#[$meta2:meta])* fn $all:ident
$(#[$meta3:meta])* fn $any:ident) => {
$(#[$meta1])*
#[must_use = "method returns a new array and does not mutate the original value"]
pub fn $func(&self) -> Array<bool, D> {
self.mapv(A::$func)
}
$(#[$meta2])*
#[must_use = "method returns a new boolean value and does not mutate the original value"]
pub fn $all(&self) -> bool {
$crate::Zip::from(self).all(|&elt| !elt.$func())
}
$(#[$meta3])*
#[must_use = "method returns a new boolean value and does not mutate the original value"]
pub fn $any(&self) -> bool {
!self.$all()
}
};
}
#[cfg(feature = "std")]
macro_rules! unary_ops {
($($(#[$meta:meta])* fn $id:ident)+) => {
$($(#[$meta])*
#[must_use = "method returns a new array and does not mutate the original value"]
pub fn $id(&self) -> Array<A, D> {
self.mapv(A::$id)
})+
};
}
#[cfg(feature = "std")]
macro_rules! binary_ops {
($($(#[$meta:meta])* fn $id:ident($ty:ty))+) => {
$($(#[$meta])*
#[must_use = "method returns a new array and does not mutate the original value"]
pub fn $id(&self, rhs: $ty) -> Array<A, D> {
self.mapv(|v| A::$id(v, rhs))
})+
};
}
/// # Element-wise methods for float arrays
///
/// Element-wise math functions for any array type that contains float number.
#[cfg(feature = "std")]
impl<A, S, D> ArrayBase<S, D>
where
A: 'static + Float,
S: Data<Elem = A>,
D: Dimension,
{
boolean_ops! {
/// If the number is `NaN` (not a number), then `true` is returned for each element.
fn is_nan
/// Return `true` if all elements are `NaN` (not a number).
fn is_all_nan
/// Return `true` if any element is `NaN` (not a number).
fn is_any_nan
}
boolean_ops! {
/// If the number is infinity, then `true` is returned for each element.
fn is_infinite
/// Return `true` if all elements are infinity.
fn is_all_infinite
/// Return `true` if any element is infinity.
fn is_any_infinite
}
unary_ops! {
/// The largest integer less than or equal to each element.
fn floor
/// The smallest integer less than or equal to each element.
fn ceil
/// The nearest integer of each element.
fn round
/// The integer part of each element.
fn trunc
/// The fractional part of each element.
fn fract
/// Absolute of each element.
fn abs
/// Sign number of each element.
///
/// + `1.0` for all positive numbers.
/// + `-1.0` for all negative numbers.
/// + `NaN` for all `NaN` (not a number).
fn signum
/// The reciprocal (inverse) of each element, `1/x`.
fn recip
/// Square root of each element.
fn sqrt
/// `e^x` of each element (exponential function).
fn exp
/// `2^x` of each element.
fn exp2
/// Natural logarithm of each element.
fn ln
/// Base 2 logarithm of each element.
fn log2
/// Base 10 logarithm of each element.
fn log10
/// Cubic root of each element.
fn cbrt
/// Sine of each element (in radians).
fn sin
/// Cosine of each element (in radians).
fn cos
/// Tangent of each element (in radians).
fn tan
/// Converts radians to degrees for each element.
fn to_degrees
/// Converts degrees to radians for each element.
fn to_radians
}
binary_ops! {
/// Integer power of each element.
///
/// This function is generally faster than using float power.
fn powi(i32)
/// Float power of each element.
fn powf(A)
/// Logarithm of each element with respect to an arbitrary base.
fn log(A)
/// The positive difference between given number and each element.
fn abs_sub(A)
}
/// Square (two powers) of each element.
#[must_use = "method returns a new array and does not mutate the original value"]
pub fn pow2(&self) -> Array<A, D>
{
self.mapv(|v: A| v * v)
}
}
impl<A, S, D> ArrayBase<S, D>
where
A: 'static + PartialOrd + Clone,
S: Data<Elem = A>,
D: Dimension,
{
/// Limit the values for each element, similar to NumPy's `clip` function.
///
/// ```
/// use ndarray::array;
///
/// let a = array![0., 1., 2., 3., 4., 5., 6., 7., 8., 9.];
/// assert_eq!(a.clamp(1., 8.), array![1., 1., 2., 3., 4., 5., 6., 7., 8., 8.]);
/// assert_eq!(a.clamp(3., 6.), array![3., 3., 3., 3., 4., 5., 6., 6., 6., 6.]);
/// ```
///
/// # Panics
///
/// Panics if `!(min <= max)`.
pub fn clamp(&self, min: A, max: A) -> Array<A, D>
{
assert!(min <= max, "min must be less than or equal to max");
self.mapv(|a| num_traits::clamp(a, min.clone(), max.clone()))
}
}