ndarray/dimension/
broadcast.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
use crate::error::*;
use crate::{Dimension, Ix0, Ix1, Ix2, Ix3, Ix4, Ix5, Ix6, IxDyn};

/// Calculate the common shape for a pair of array shapes, that they can be broadcasted
/// to. Return an error if the shapes are not compatible.
///
/// Uses the [NumPy broadcasting rules]
//  (https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html#general-broadcasting-rules).
pub(crate) fn co_broadcast<D1, D2, Output>(shape1: &D1, shape2: &D2) -> Result<Output, ShapeError>
where
    D1: Dimension,
    D2: Dimension,
    Output: Dimension,
{
    let (k, overflow) = shape1.ndim().overflowing_sub(shape2.ndim());
    // Swap the order if d2 is longer.
    if overflow {
        return co_broadcast::<D2, D1, Output>(shape2, shape1);
    }
    // The output should be the same length as shape1.
    let mut out = Output::zeros(shape1.ndim());
    for (out, s) in izip!(out.slice_mut(), shape1.slice()) {
        *out = *s;
    }
    for (out, s2) in izip!(&mut out.slice_mut()[k..], shape2.slice()) {
        if *out != *s2 {
            if *out == 1 {
                *out = *s2
            } else if *s2 != 1 {
                return Err(from_kind(ErrorKind::IncompatibleShape));
            }
        }
    }
    Ok(out)
}

pub trait DimMax<Other: Dimension>
{
    /// The resulting dimension type after broadcasting.
    type Output: Dimension;
}

/// Dimensions of the same type remain unchanged when co_broadcast.
/// So you can directly use `D` as the resulting type.
/// (Instead of `<D as DimMax<D>>::BroadcastOutput`)
impl<D: Dimension> DimMax<D> for D
{
    type Output = D;
}

macro_rules! impl_broadcast_distinct_fixed {
    ($smaller:ty, $larger:ty) => {
        impl DimMax<$larger> for $smaller {
            type Output = $larger;
        }

        impl DimMax<$smaller> for $larger {
            type Output = $larger;
        }
    };
}

impl_broadcast_distinct_fixed!(Ix0, Ix1);
impl_broadcast_distinct_fixed!(Ix0, Ix2);
impl_broadcast_distinct_fixed!(Ix0, Ix3);
impl_broadcast_distinct_fixed!(Ix0, Ix4);
impl_broadcast_distinct_fixed!(Ix0, Ix5);
impl_broadcast_distinct_fixed!(Ix0, Ix6);
impl_broadcast_distinct_fixed!(Ix1, Ix2);
impl_broadcast_distinct_fixed!(Ix1, Ix3);
impl_broadcast_distinct_fixed!(Ix1, Ix4);
impl_broadcast_distinct_fixed!(Ix1, Ix5);
impl_broadcast_distinct_fixed!(Ix1, Ix6);
impl_broadcast_distinct_fixed!(Ix2, Ix3);
impl_broadcast_distinct_fixed!(Ix2, Ix4);
impl_broadcast_distinct_fixed!(Ix2, Ix5);
impl_broadcast_distinct_fixed!(Ix2, Ix6);
impl_broadcast_distinct_fixed!(Ix3, Ix4);
impl_broadcast_distinct_fixed!(Ix3, Ix5);
impl_broadcast_distinct_fixed!(Ix3, Ix6);
impl_broadcast_distinct_fixed!(Ix4, Ix5);
impl_broadcast_distinct_fixed!(Ix4, Ix6);
impl_broadcast_distinct_fixed!(Ix5, Ix6);
impl_broadcast_distinct_fixed!(Ix0, IxDyn);
impl_broadcast_distinct_fixed!(Ix1, IxDyn);
impl_broadcast_distinct_fixed!(Ix2, IxDyn);
impl_broadcast_distinct_fixed!(Ix3, IxDyn);
impl_broadcast_distinct_fixed!(Ix4, IxDyn);
impl_broadcast_distinct_fixed!(Ix5, IxDyn);
impl_broadcast_distinct_fixed!(Ix6, IxDyn);

#[cfg(test)]
#[cfg(feature = "std")]
mod tests
{
    use super::co_broadcast;
    use crate::{Dim, DimMax, Dimension, ErrorKind, Ix0, IxDynImpl, ShapeError};

    #[test]
    fn test_broadcast_shape()
    {
        fn test_co<D1, D2>(d1: &D1, d2: &D2, r: Result<<D1 as DimMax<D2>>::Output, ShapeError>)
        where
            D1: Dimension + DimMax<D2>,
            D2: Dimension,
        {
            let d = co_broadcast::<D1, D2, <D1 as DimMax<D2>>::Output>(&d1, d2);
            assert_eq!(d, r);
        }
        test_co(&Dim([2, 3]), &Dim([4, 1, 3]), Ok(Dim([4, 2, 3])));
        test_co(&Dim([1, 2, 2]), &Dim([1, 3, 4]), Err(ShapeError::from_kind(ErrorKind::IncompatibleShape)));
        test_co(&Dim([3, 4, 5]), &Ix0(), Ok(Dim([3, 4, 5])));
        let v = vec![1, 2, 3, 4, 5, 6, 7];
        test_co(&Dim(vec![1, 1, 3, 1, 5, 1, 7]), &Dim([2, 1, 4, 1, 6, 1]), Ok(Dim(IxDynImpl::from(v.as_slice()))));
        let d = Dim([1, 2, 1, 3]);
        test_co(&d, &d, Ok(d));
        test_co(&Dim([2, 1, 2]).into_dyn(), &Dim(0), Err(ShapeError::from_kind(ErrorKind::IncompatibleShape)));
        test_co(&Dim([2, 1, 1]), &Dim([0, 0, 1, 3, 4]), Ok(Dim([0, 0, 2, 3, 4])));
        test_co(&Dim([0]), &Dim([0, 0, 0]), Ok(Dim([0, 0, 0])));
        test_co(&Dim(1), &Dim([1, 0, 0]), Ok(Dim([1, 0, 0])));
        test_co(&Dim([1, 3, 0, 1, 1]), &Dim([1, 2, 3, 1]), Err(ShapeError::from_kind(ErrorKind::IncompatibleShape)));
    }
}