jiff/tz/concatenated.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
use alloc::{
string::{String, ToString},
vec::Vec,
};
use crate::{
error::{err, Error, ErrorContext},
tz::TimeZone,
util::{array_str::ArrayStr, escape, utf8},
};
/// An abstraction for reading data from Android's concatenated TZif data file.
///
/// This abstraction is designed in a way that the data is reads from is
/// largely untrusted. This means that, no matter what sequence of bytes is
/// given, this should never panic (or else there is a bug). Moreover, there is
/// some guarding against disproportionate allocation. While big allocations
/// can still happen, they require a proportionally large data file. (Thus,
/// callers can guard against this by considering the size of the data.) What
/// this implementation prevents against is accidentally OOMing or panicking as
/// a result of naively doing `Vec::with_capacity(rdr.decode_integer())`.
///
/// This is also designed to work in alloc-only contexts mostly out of "good
/// sense." Technically we don't (currently) use this outside of `std`, since
/// it's only used for reading tzdb on Android from the file system. But we do
/// things this way in case we end up wanting to use it for something else.
/// If we needed this for no-alloc environments, then that's a much bigger
/// change, if only because it would require making the TZif parser no-alloc
/// compatible, and it's not quite clear what the best way to do that is. We
/// achieve the alloc-only API be introducing a trait that abstracts over a
/// `File` for random access to bytes.
#[derive(Debug)]
pub(crate) struct ConcatenatedTzif<R> {
rdr: R,
header: Header,
}
impl<R: Read> ConcatenatedTzif<R> {
/// Open the concatenated TZif file using the reader given.
///
/// This reads the header and will return an error if the header is
/// invalid.
pub(crate) fn open(rdr: R) -> Result<ConcatenatedTzif<R>, Error> {
let header = Header::read(&rdr)?;
Ok(ConcatenatedTzif { rdr, header })
}
/// Returns the version of this `tzdata` database.
pub(crate) fn version(&self) -> ArrayStr<5> {
self.header.version
}
/// Returns a `TimeZone` extracted from this concatenated TZif data.
///
/// This is only successful if an index entry with the corresponding
/// IANA time zone identifier could be found.
///
/// Callers must provide two scratch buffers that are used for temporary
/// allocation internally. Callers can create a new buffer for each call,
/// but it's likely faster to reuse them if possible.
///
/// If a `TimeZone` is returned, it is guaranteed to have a present IANA
/// name (accessible via `TimeZone::iana_name`).
pub(crate) fn get(
&self,
query: &str,
scratch1: &mut Vec<u8>,
scratch2: &mut Vec<u8>,
) -> Result<Option<TimeZone>, Error> {
scratch1.clear();
alloc(scratch1, self.header.index_len())?;
self.rdr
.read_exact_at(scratch1, self.header.index_offset)
.context("failed to read index block")?;
let mut index = &**scratch1;
while !index.is_empty() {
let entry = IndexEntry::new(&index[..IndexEntry::LEN]);
index = &index[IndexEntry::LEN..];
let ordering = utf8::cmp_ignore_ascii_case_bytes(
entry.name_bytes(),
query.as_bytes(),
);
if ordering.is_ne() {
continue;
}
// OK because `entry.name_bytes()` is equal to `query`,
// ignoring ASCII case. The only way this can be true is is
// `entry.name_bytes()` is itself valid UTF-8.
let name = entry.name().unwrap();
scratch2.clear();
alloc(scratch2, entry.len())?;
let start = self.header.data_offset.saturating_add(entry.start());
self.rdr
.read_exact_at(scratch2, start)
.context("failed to read TZif data block")?;
return TimeZone::tzif(name, scratch2).map(Some);
}
Ok(None)
}
/// Returns a list of all IANA time zone identifiers in this concatenated
/// TZif data.
///
/// Callers must provide a scratch buffer that is used for temporary
/// allocation internally. Callers can create a new buffer for each call,
/// but it's likely faster to reuse them if possible.
pub(crate) fn available(
&self,
scratch: &mut Vec<u8>,
) -> Result<Vec<String>, Error> {
scratch.clear();
alloc(scratch, self.header.index_len())?;
self.rdr
.read_exact_at(scratch, self.header.index_offset)
.context("failed to read index block")?;
let names_len = self.header.index_len() / IndexEntry::LEN;
// Why are we careless with this alloc? Well, its size is proportional
// to the actual amount of data in the file. So the only way to get a
// big alloc is to create a huge file. This seems... fine... I guess.
// Where as the `alloc` above is done on the basis of an arbitrary
// 32-bit integer.
let mut names = Vec::with_capacity(names_len);
let mut index = &**scratch;
while !index.is_empty() {
let entry = IndexEntry::new(&index[..IndexEntry::LEN]);
index = &index[IndexEntry::LEN..];
names.push(entry.name()?.to_string());
}
Ok(names)
}
}
/// The header of Android concatenated TZif data.
///
/// The header has the version and some offsets indicating the location of
/// the index entry (a list of IANA time zone identifiers and offsets into
/// the data block) and the actual TZif data.
#[derive(Debug)]
struct Header {
version: ArrayStr<5>,
index_offset: u64,
data_offset: u64,
}
impl Header {
/// Reads the header from Android's concatenated TZif concatenated data
/// file.
///
/// Basically, this gives us the version and some offsets for where to find
/// data.
fn read<R: Read + ?Sized>(rdr: &R) -> Result<Header, Error> {
// 12 bytes plus 3 4-byte big endian integers.
let mut buf = [0; 12 + 3 * 4];
rdr.read_exact_at(&mut buf, 0)
.context("failed to read concatenated TZif header")?;
if &buf[..6] != b"tzdata" {
return Err(err!(
"expected first 6 bytes of concatenated TZif header \
to be `tzdata`, but found `{found}`",
found = escape::Bytes(&buf[..6]),
));
}
if buf[11] != 0 {
return Err(err!(
"expected last byte of concatenated TZif header \
to be NUL, but found `{found}`",
found = escape::Bytes(&buf[..12]),
));
}
let version = {
let version = core::str::from_utf8(&buf[6..11]).map_err(|_| {
err!(
"expected version in concatenated TZif header to \
be valid UTF-8, but found `{found}`",
found = escape::Bytes(&buf[6..11]),
)
})?;
// OK because `version` is exactly 5 bytes, by construction.
ArrayStr::new(version).unwrap()
};
// OK because the sub-slice is sized to exactly 4 bytes.
let index_offset = u64::from(read_be32(&buf[12..16]));
// OK because the sub-slice is sized to exactly 4 bytes.
let data_offset = u64::from(read_be32(&buf[16..20]));
if index_offset > data_offset {
return Err(err!(
"invalid index ({index_offset}) and data ({data_offset}) \
offsets, expected index offset to be less than or equal \
to data offset",
));
}
// we don't read 20..24 since we don't care about zonetab (yet)
let header = Header { version, index_offset, data_offset };
if header.index_len() % IndexEntry::LEN != 0 {
return Err(err!(
"length of index block is not a multiple {len}",
len = IndexEntry::LEN,
));
}
Ok(header)
}
/// Returns the length of the index section of the concatenated tzdb.
///
/// Beware of using this to create allocations. In theory, this should be
/// trusted data, but the length can be any 32-bit integer. If it's used to
/// create an allocation, it could potentially be up to 4GB.
fn index_len(&self) -> usize {
// OK because `Header` parsing returns an error if this overflows.
let len = self.data_offset.checked_sub(self.index_offset).unwrap();
// N.B. Overflow only occurs here on 16-bit (or smaller) platforms,
// which at the time of writing, is not supported by Jiff. Instead,
// a `usize::MAX` will trigger an allocation error.
usize::try_from(len).unwrap_or(usize::MAX)
}
}
/// A view into a single index entry in the index block of concatenated TZif
/// data.
///
/// If we had safe transmute, it would be much nicer to define this as
///
/// ```text
/// #[derive(Clone, Copy)]
/// #[repr(transparent, align(1))]
/// struct IndexEntry {
/// name: [u8; 40],
/// start: u32,
/// len: u32,
/// _raw_utc_offset: u32, // we don't use this here
/// }
/// ```
///
/// And probably implement a trait asserting that this is plain old data (or
/// derive it safely). And then we could cast `&[u8]` to `&[IndexEntry]`
/// safely and access the individual fields as is. We could do this today,
/// but not in safe code. And since this isn't performance critical, it's just
/// not worth flagging this code as potentially containing undefined behavior.
#[derive(Clone, Copy)]
struct IndexEntry<'a>(&'a [u8]);
impl<'a> IndexEntry<'a> {
/// The length of an index entry. It's fixed size. 40 bytes for the IANA
/// time zone identifier. 4 bytes for each of 3 big-endian integers. The
/// first is the start of the corresponding TZif data within the data
/// block. The second is the length of said TZif data. And the third is
/// the "raw UTC offset" of the time zone. (I'm unclear on the semantics
/// of this third, since some time zones have more than one because of
/// DST. And of course, it can change over time. Since I don't know what
/// Android uses this for, I'm not sure how I'm supposed to interpret it.)
const LEN: usize = 40 + 3 * 4;
/// Creates a new view into an entry in the concatenated TZif index.
///
/// # Panics
///
/// When `slice` does not have the expected length (`IndexEntry::LEN`).
fn new(slice: &'a [u8]) -> IndexEntry<'a> {
assert_eq!(slice.len(), IndexEntry::LEN, "invalid index entry length");
IndexEntry(slice)
}
/// Like `name_bytes`, but as a `&str`.
///
/// This returns an error if the name isn't valid UTF-8.
fn name(&self) -> Result<&str, Error> {
core::str::from_utf8(self.name_bytes()).map_err(|_| {
err!(
"IANA time zone identifier `{name}` is not valid UTF-8",
name = escape::Bytes(self.name_bytes()),
)
})
}
/// Returns the IANA time zone identifier as a byte slice.
///
/// In theory, an empty slice could be returned. But if that happens,
/// then there is probably a bug in this code somewhere, the format
/// changed or the source data is corrupt somehow.
fn name_bytes(&self) -> &'a [u8] {
let mut block = &self.0[..40];
while block.last().copied() == Some(0) {
block = &block[..block.len() - 1];
}
block
}
/// Returns the starting offset (relative to the beginning of the TZif
/// data block) of the corresponding TZif data.
fn start(&self) -> u64 {
u64::from(read_be32(&self.0[40..44]))
}
/// Returns the length of the TZif data block.
///
/// Beware of using this to create allocations. In theory, this should be
/// trusted data, but the length can be any 32-bit integer. If it's used to
/// create an allocation, it could potentially be up to 4GB.
fn len(&self) -> usize {
// N.B. Overflow only occurs here on 16-bit (or smaller) platforms,
// which at the time of writing, is not supported by Jiff. Instead,
// a `usize::MAX` will trigger an allocation error.
usize::try_from(read_be32(&self.0[44..48])).unwrap_or(usize::MAX)
}
}
impl<'a> core::fmt::Debug for IndexEntry<'a> {
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
f.debug_struct("IndexEntry")
.field("name", &escape::Bytes(self.name_bytes()))
.field("start", &self.start())
.field("len", &self.len())
.finish()
}
}
/// A crate-internal trait defining the source of concatenated TZif data.
///
/// Basically, this just provides a way to read a fixed amount of data at a
/// particular offset. This is obviously trivial to implement on `&[u8]` (and
/// indeed, we do so for testing), but we use it to abstract over platform
/// differences when reading from a `File`.
///
/// The intent is that on Unix, this will use `pread`, which avoids a file
/// seek followed by a `read` call.
pub(crate) trait Read {
fn read_exact_at(&self, buf: &mut [u8], offset: u64) -> Result<(), Error>;
}
impl<'a, R: Read + ?Sized> Read for &'a R {
fn read_exact_at(&self, buf: &mut [u8], offset: u64) -> Result<(), Error> {
(**self).read_exact_at(buf, offset)
}
}
/// Reads a 32-bit big endian encoded integer from `bytes`.
///
/// # Panics
///
/// If `bytes.len() != 4`.
fn read_be32(bytes: &[u8]) -> u32 {
u32::from_be_bytes(bytes.try_into().expect("slice of length 4"))
}
#[cfg(test)]
impl Read for [u8] {
fn read_exact_at(&self, buf: &mut [u8], offset: u64) -> Result<(), Error> {
let offset = usize::try_from(offset)
.map_err(|_| err!("offset `{offset}` overflowed `usize`"))?;
let Some(slice) = self.get(offset..) else {
return Err(err!(
"given offset `{offset}` is not valid \
(only {len} bytes are available)",
len = self.len(),
));
};
if buf.len() > slice.len() {
return Err(err!(
"unexpected EOF, expected {len} bytes but only have {have}",
len = buf.len(),
have = slice.len()
));
}
buf.copy_from_slice(&slice[..buf.len()]);
Ok(())
}
}
#[cfg(all(feature = "std", unix))]
impl Read for std::fs::File {
fn read_exact_at(&self, buf: &mut [u8], offset: u64) -> Result<(), Error> {
use std::os::unix::fs::FileExt;
FileExt::read_exact_at(self, buf, offset).map_err(Error::io)
}
}
#[cfg(all(feature = "std", windows))]
impl Read for std::fs::File {
fn read_exact_at(
&self,
mut buf: &mut [u8],
mut offset: u64,
) -> Result<(), Error> {
use std::{io, os::windows::fs::FileExt};
while !buf.is_empty() {
match self.seek_read(buf, offset) {
Ok(0) => break,
Ok(n) => {
buf = &mut buf[n..];
offset = u64::try_from(n)
.ok()
.and_then(|n| n.checked_add(offset))
.ok_or_else(|| {
err!("offset overflow when reading from `File`")
})?;
}
Err(ref e) if e.kind() == io::ErrorKind::Interrupted => {}
Err(e) => return Err(Error::io(e)),
}
}
if !buf.is_empty() {
Err(Error::io(io::Error::new(
io::ErrorKind::UnexpectedEof,
"failed to fill whole buffer",
)))
} else {
Ok(())
}
}
}
#[cfg(all(feature = "std", all(not(unix), not(windows))))]
impl Read for std::fs::File {
fn read_exact_at(&self, buf: &mut [u8], offset: u64) -> Result<(), Error> {
use std::io::{Read as _, Seek as _, SeekFrom};
let mut file = self;
file.seek(SeekFrom::Start(offset)).map_err(Error::io).with_context(
|| err!("failed to seek to offset {offset} in `File`"),
)?;
file.read_exact(buf).map_err(Error::io)
}
}
/// Allocates `additional` extra bytes on the `Vec` given and set them to `0`.
///
/// This specifically will never do an "OOM panic" and will instead return an
/// error (courtesy of `Vec::try_reserve_exact`). It will also return an error
/// without even trying the allocation if it's deemed to be "too big."
///
/// This is used so that we are extra careful about creating allocations based
/// on integers parsed from concatenated TZif data. Generally speaking, the
/// data we parse should be "trusted" (since it's probably not writable by
/// anyone other than `root`), but who knows where this code will ultimately be
/// used. So we try pretty hard to avoid panicking (even for OOM).
///
/// To be clear, we probably could panic on the error path. The goal here
/// isn't to avoid OOM because you can't allocate 10 bytes---Jiff isn't robust
/// enough in that kind of environment by far. The goal is to avoid OOM for
/// exorbitantly large allocations through some kind of attack vector.
fn alloc(bytes: &mut Vec<u8>, additional: usize) -> Result<(), Error> {
// At time of writing, the biggest TZif data file is a few KB. And the
// index block is tens of KB. So impose a limit that is a couple of orders
// of magnitude bigger, but still overall pretty small for... some systems.
// Anyway, I welcome improvements to this heuristic!
const LIMIT: usize = 10 * 1 << 20;
if additional > LIMIT {
return Err(err!(
"attempted to allocate more than {LIMIT} bytes \
while reading concatenated TZif data, which \
exceeds a heuristic limit to prevent huge allocations \
(please file a bug if this error is inappropriate)",
));
}
bytes.try_reserve_exact(additional).map_err(|_| {
err!(
"failed to allocation {additional} bytes \
for reading concatenated TZif data"
)
})?;
// This... can't actually happen right?
let new_len = bytes
.len()
.checked_add(additional)
.ok_or_else(|| err!("total allocation length overflowed `usize`"))?;
bytes.resize(new_len, 0);
Ok(())
}
#[cfg(test)]
mod tests {
use crate::{
civil::date,
tz::{
offset, testdata::ANDROID_CONCATENATED_TZIF, AmbiguousOffset,
Offset,
},
Timestamp,
};
use super::*;
fn unambiguous(offset_hours: i8) -> AmbiguousOffset {
let offset = offset(offset_hours);
o_unambiguous(offset)
}
fn gap(
earlier_offset_hours: i8,
later_offset_hours: i8,
) -> AmbiguousOffset {
let earlier = offset(earlier_offset_hours);
let later = offset(later_offset_hours);
o_gap(earlier, later)
}
fn fold(
earlier_offset_hours: i8,
later_offset_hours: i8,
) -> AmbiguousOffset {
let earlier = offset(earlier_offset_hours);
let later = offset(later_offset_hours);
o_fold(earlier, later)
}
fn o_unambiguous(offset: Offset) -> AmbiguousOffset {
AmbiguousOffset::Unambiguous { offset }
}
fn o_gap(earlier: Offset, later: Offset) -> AmbiguousOffset {
AmbiguousOffset::Gap { before: earlier, after: later }
}
fn o_fold(earlier: Offset, later: Offset) -> AmbiguousOffset {
AmbiguousOffset::Fold { before: earlier, after: later }
}
// Copied from src/tz/mod.rs.
#[test]
fn time_zone_tzif_to_ambiguous_timestamp() {
let tests: &[(&str, &[_])] = &[
(
"America/New_York",
&[
((1969, 12, 31, 19, 0, 0, 0), unambiguous(-5)),
((2024, 3, 10, 1, 59, 59, 999_999_999), unambiguous(-5)),
((2024, 3, 10, 2, 0, 0, 0), gap(-5, -4)),
((2024, 3, 10, 2, 59, 59, 999_999_999), gap(-5, -4)),
((2024, 3, 10, 3, 0, 0, 0), unambiguous(-4)),
((2024, 11, 3, 0, 59, 59, 999_999_999), unambiguous(-4)),
((2024, 11, 3, 1, 0, 0, 0), fold(-4, -5)),
((2024, 11, 3, 1, 59, 59, 999_999_999), fold(-4, -5)),
((2024, 11, 3, 2, 0, 0, 0), unambiguous(-5)),
],
),
(
"Europe/Dublin",
&[
((1970, 1, 1, 0, 0, 0, 0), unambiguous(1)),
((2024, 3, 31, 0, 59, 59, 999_999_999), unambiguous(0)),
((2024, 3, 31, 1, 0, 0, 0), gap(0, 1)),
((2024, 3, 31, 1, 59, 59, 999_999_999), gap(0, 1)),
((2024, 3, 31, 2, 0, 0, 0), unambiguous(1)),
((2024, 10, 27, 0, 59, 59, 999_999_999), unambiguous(1)),
((2024, 10, 27, 1, 0, 0, 0), fold(1, 0)),
((2024, 10, 27, 1, 59, 59, 999_999_999), fold(1, 0)),
((2024, 10, 27, 2, 0, 0, 0), unambiguous(0)),
],
),
(
"Australia/Tasmania",
&[
((1970, 1, 1, 11, 0, 0, 0), unambiguous(11)),
((2024, 4, 7, 1, 59, 59, 999_999_999), unambiguous(11)),
((2024, 4, 7, 2, 0, 0, 0), fold(11, 10)),
((2024, 4, 7, 2, 59, 59, 999_999_999), fold(11, 10)),
((2024, 4, 7, 3, 0, 0, 0), unambiguous(10)),
((2024, 10, 6, 1, 59, 59, 999_999_999), unambiguous(10)),
((2024, 10, 6, 2, 0, 0, 0), gap(10, 11)),
((2024, 10, 6, 2, 59, 59, 999_999_999), gap(10, 11)),
((2024, 10, 6, 3, 0, 0, 0), unambiguous(11)),
],
),
(
"Antarctica/Troll",
&[
((1970, 1, 1, 0, 0, 0, 0), unambiguous(0)),
// test the gap
((2024, 3, 31, 0, 59, 59, 999_999_999), unambiguous(0)),
((2024, 3, 31, 1, 0, 0, 0), gap(0, 2)),
((2024, 3, 31, 1, 59, 59, 999_999_999), gap(0, 2)),
// still in the gap!
((2024, 3, 31, 2, 0, 0, 0), gap(0, 2)),
((2024, 3, 31, 2, 59, 59, 999_999_999), gap(0, 2)),
// finally out
((2024, 3, 31, 3, 0, 0, 0), unambiguous(2)),
// test the fold
((2024, 10, 27, 0, 59, 59, 999_999_999), unambiguous(2)),
((2024, 10, 27, 1, 0, 0, 0), fold(2, 0)),
((2024, 10, 27, 1, 59, 59, 999_999_999), fold(2, 0)),
// still in the fold!
((2024, 10, 27, 2, 0, 0, 0), fold(2, 0)),
((2024, 10, 27, 2, 59, 59, 999_999_999), fold(2, 0)),
// finally out
((2024, 10, 27, 3, 0, 0, 0), unambiguous(0)),
],
),
(
"America/St_Johns",
&[
(
(1969, 12, 31, 20, 30, 0, 0),
o_unambiguous(-Offset::hms(3, 30, 0)),
),
(
(2024, 3, 10, 1, 59, 59, 999_999_999),
o_unambiguous(-Offset::hms(3, 30, 0)),
),
(
(2024, 3, 10, 2, 0, 0, 0),
o_gap(-Offset::hms(3, 30, 0), -Offset::hms(2, 30, 0)),
),
(
(2024, 3, 10, 2, 59, 59, 999_999_999),
o_gap(-Offset::hms(3, 30, 0), -Offset::hms(2, 30, 0)),
),
(
(2024, 3, 10, 3, 0, 0, 0),
o_unambiguous(-Offset::hms(2, 30, 0)),
),
(
(2024, 11, 3, 0, 59, 59, 999_999_999),
o_unambiguous(-Offset::hms(2, 30, 0)),
),
(
(2024, 11, 3, 1, 0, 0, 0),
o_fold(-Offset::hms(2, 30, 0), -Offset::hms(3, 30, 0)),
),
(
(2024, 11, 3, 1, 59, 59, 999_999_999),
o_fold(-Offset::hms(2, 30, 0), -Offset::hms(3, 30, 0)),
),
(
(2024, 11, 3, 2, 0, 0, 0),
o_unambiguous(-Offset::hms(3, 30, 0)),
),
],
),
// This time zone has an interesting transition where it jumps
// backwards a full day at 1867-10-19T15:30:00.
(
"America/Sitka",
&[
((1969, 12, 31, 16, 0, 0, 0), unambiguous(-8)),
(
(-9999, 1, 2, 16, 58, 46, 0),
o_unambiguous(Offset::hms(14, 58, 47)),
),
(
(1867, 10, 18, 15, 29, 59, 0),
o_unambiguous(Offset::hms(14, 58, 47)),
),
(
(1867, 10, 18, 15, 30, 0, 0),
// A fold of 24 hours!!!
o_fold(
Offset::hms(14, 58, 47),
-Offset::hms(9, 1, 13),
),
),
(
(1867, 10, 19, 15, 29, 59, 999_999_999),
// Still in the fold...
o_fold(
Offset::hms(14, 58, 47),
-Offset::hms(9, 1, 13),
),
),
(
(1867, 10, 19, 15, 30, 0, 0),
// Finally out.
o_unambiguous(-Offset::hms(9, 1, 13)),
),
],
),
// As with to_datetime, we test every possible transition
// point here since this time zone has a small number of them.
(
"Pacific/Honolulu",
&[
(
(1896, 1, 13, 11, 59, 59, 0),
o_unambiguous(-Offset::hms(10, 31, 26)),
),
(
(1896, 1, 13, 12, 0, 0, 0),
o_gap(
-Offset::hms(10, 31, 26),
-Offset::hms(10, 30, 0),
),
),
(
(1896, 1, 13, 12, 1, 25, 0),
o_gap(
-Offset::hms(10, 31, 26),
-Offset::hms(10, 30, 0),
),
),
(
(1896, 1, 13, 12, 1, 26, 0),
o_unambiguous(-Offset::hms(10, 30, 0)),
),
(
(1933, 4, 30, 1, 59, 59, 0),
o_unambiguous(-Offset::hms(10, 30, 0)),
),
(
(1933, 4, 30, 2, 0, 0, 0),
o_gap(-Offset::hms(10, 30, 0), -Offset::hms(9, 30, 0)),
),
(
(1933, 4, 30, 2, 59, 59, 0),
o_gap(-Offset::hms(10, 30, 0), -Offset::hms(9, 30, 0)),
),
(
(1933, 4, 30, 3, 0, 0, 0),
o_unambiguous(-Offset::hms(9, 30, 0)),
),
(
(1933, 5, 21, 10, 59, 59, 0),
o_unambiguous(-Offset::hms(9, 30, 0)),
),
(
(1933, 5, 21, 11, 0, 0, 0),
o_fold(
-Offset::hms(9, 30, 0),
-Offset::hms(10, 30, 0),
),
),
(
(1933, 5, 21, 11, 59, 59, 0),
o_fold(
-Offset::hms(9, 30, 0),
-Offset::hms(10, 30, 0),
),
),
(
(1933, 5, 21, 12, 0, 0, 0),
o_unambiguous(-Offset::hms(10, 30, 0)),
),
(
(1942, 2, 9, 1, 59, 59, 0),
o_unambiguous(-Offset::hms(10, 30, 0)),
),
(
(1942, 2, 9, 2, 0, 0, 0),
o_gap(-Offset::hms(10, 30, 0), -Offset::hms(9, 30, 0)),
),
(
(1942, 2, 9, 2, 59, 59, 0),
o_gap(-Offset::hms(10, 30, 0), -Offset::hms(9, 30, 0)),
),
(
(1942, 2, 9, 3, 0, 0, 0),
o_unambiguous(-Offset::hms(9, 30, 0)),
),
(
(1945, 8, 14, 13, 29, 59, 0),
o_unambiguous(-Offset::hms(9, 30, 0)),
),
(
(1945, 8, 14, 13, 30, 0, 0),
o_unambiguous(-Offset::hms(9, 30, 0)),
),
(
(1945, 8, 14, 13, 30, 1, 0),
o_unambiguous(-Offset::hms(9, 30, 0)),
),
(
(1945, 9, 30, 0, 59, 59, 0),
o_unambiguous(-Offset::hms(9, 30, 0)),
),
(
(1945, 9, 30, 1, 0, 0, 0),
o_fold(
-Offset::hms(9, 30, 0),
-Offset::hms(10, 30, 0),
),
),
(
(1945, 9, 30, 1, 59, 59, 0),
o_fold(
-Offset::hms(9, 30, 0),
-Offset::hms(10, 30, 0),
),
),
(
(1945, 9, 30, 2, 0, 0, 0),
o_unambiguous(-Offset::hms(10, 30, 0)),
),
(
(1947, 6, 8, 1, 59, 59, 0),
o_unambiguous(-Offset::hms(10, 30, 0)),
),
(
(1947, 6, 8, 2, 0, 0, 0),
o_gap(-Offset::hms(10, 30, 0), -offset(10)),
),
(
(1947, 6, 8, 2, 29, 59, 0),
o_gap(-Offset::hms(10, 30, 0), -offset(10)),
),
((1947, 6, 8, 2, 30, 0, 0), unambiguous(-10)),
],
),
];
let db = ConcatenatedTzif::open(ANDROID_CONCATENATED_TZIF).unwrap();
let (mut buf1, mut buf2) = (alloc::vec![], alloc::vec![]);
for &(tzname, datetimes_to_ambiguous) in tests {
let tz = db.get(tzname, &mut buf1, &mut buf2).unwrap().unwrap();
for &(datetime, ambiguous_kind) in datetimes_to_ambiguous {
let (year, month, day, hour, min, sec, nano) = datetime;
let dt = date(year, month, day).at(hour, min, sec, nano);
let got = tz.to_ambiguous_zoned(dt);
assert_eq!(
got.offset(),
ambiguous_kind,
"\nTZ: {tzname}\ndatetime: \
{year:04}-{month:02}-{day:02}T\
{hour:02}:{min:02}:{sec:02}.{nano:09}",
);
}
}
}
// Copied from src/tz/mod.rs.
#[test]
fn time_zone_tzif_to_datetime() {
let o = |hours| offset(hours);
let tests: &[(&str, &[_])] = &[
(
"America/New_York",
&[
((0, 0), o(-5), "EST", (1969, 12, 31, 19, 0, 0, 0)),
(
(1710052200, 0),
o(-5),
"EST",
(2024, 3, 10, 1, 30, 0, 0),
),
(
(1710053999, 999_999_999),
o(-5),
"EST",
(2024, 3, 10, 1, 59, 59, 999_999_999),
),
((1710054000, 0), o(-4), "EDT", (2024, 3, 10, 3, 0, 0, 0)),
(
(1710055800, 0),
o(-4),
"EDT",
(2024, 3, 10, 3, 30, 0, 0),
),
((1730610000, 0), o(-4), "EDT", (2024, 11, 3, 1, 0, 0, 0)),
(
(1730611800, 0),
o(-4),
"EDT",
(2024, 11, 3, 1, 30, 0, 0),
),
(
(1730613599, 999_999_999),
o(-4),
"EDT",
(2024, 11, 3, 1, 59, 59, 999_999_999),
),
((1730613600, 0), o(-5), "EST", (2024, 11, 3, 1, 0, 0, 0)),
(
(1730615400, 0),
o(-5),
"EST",
(2024, 11, 3, 1, 30, 0, 0),
),
],
),
(
"Australia/Tasmania",
&[
((0, 0), o(11), "AEDT", (1970, 1, 1, 11, 0, 0, 0)),
(
(1728142200, 0),
o(10),
"AEST",
(2024, 10, 6, 1, 30, 0, 0),
),
(
(1728143999, 999_999_999),
o(10),
"AEST",
(2024, 10, 6, 1, 59, 59, 999_999_999),
),
(
(1728144000, 0),
o(11),
"AEDT",
(2024, 10, 6, 3, 0, 0, 0),
),
(
(1728145800, 0),
o(11),
"AEDT",
(2024, 10, 6, 3, 30, 0, 0),
),
((1712415600, 0), o(11), "AEDT", (2024, 4, 7, 2, 0, 0, 0)),
(
(1712417400, 0),
o(11),
"AEDT",
(2024, 4, 7, 2, 30, 0, 0),
),
(
(1712419199, 999_999_999),
o(11),
"AEDT",
(2024, 4, 7, 2, 59, 59, 999_999_999),
),
((1712419200, 0), o(10), "AEST", (2024, 4, 7, 2, 0, 0, 0)),
(
(1712421000, 0),
o(10),
"AEST",
(2024, 4, 7, 2, 30, 0, 0),
),
],
),
// Pacific/Honolulu is small eough that we just test every
// possible instant before, at and after each transition.
(
"Pacific/Honolulu",
&[
(
(-2334101315, 0),
-Offset::hms(10, 31, 26),
"LMT",
(1896, 1, 13, 11, 59, 59, 0),
),
(
(-2334101314, 0),
-Offset::hms(10, 30, 0),
"HST",
(1896, 1, 13, 12, 1, 26, 0),
),
(
(-2334101313, 0),
-Offset::hms(10, 30, 0),
"HST",
(1896, 1, 13, 12, 1, 27, 0),
),
(
(-1157283001, 0),
-Offset::hms(10, 30, 0),
"HST",
(1933, 4, 30, 1, 59, 59, 0),
),
(
(-1157283000, 0),
-Offset::hms(9, 30, 0),
"HDT",
(1933, 4, 30, 3, 0, 0, 0),
),
(
(-1157282999, 0),
-Offset::hms(9, 30, 0),
"HDT",
(1933, 4, 30, 3, 0, 1, 0),
),
(
(-1155436201, 0),
-Offset::hms(9, 30, 0),
"HDT",
(1933, 5, 21, 11, 59, 59, 0),
),
(
(-1155436200, 0),
-Offset::hms(10, 30, 0),
"HST",
(1933, 5, 21, 11, 0, 0, 0),
),
(
(-1155436199, 0),
-Offset::hms(10, 30, 0),
"HST",
(1933, 5, 21, 11, 0, 1, 0),
),
(
(-880198201, 0),
-Offset::hms(10, 30, 0),
"HST",
(1942, 2, 9, 1, 59, 59, 0),
),
(
(-880198200, 0),
-Offset::hms(9, 30, 0),
"HWT",
(1942, 2, 9, 3, 0, 0, 0),
),
(
(-880198199, 0),
-Offset::hms(9, 30, 0),
"HWT",
(1942, 2, 9, 3, 0, 1, 0),
),
(
(-769395601, 0),
-Offset::hms(9, 30, 0),
"HWT",
(1945, 8, 14, 13, 29, 59, 0),
),
(
(-769395600, 0),
-Offset::hms(9, 30, 0),
"HPT",
(1945, 8, 14, 13, 30, 0, 0),
),
(
(-769395599, 0),
-Offset::hms(9, 30, 0),
"HPT",
(1945, 8, 14, 13, 30, 1, 0),
),
(
(-765376201, 0),
-Offset::hms(9, 30, 0),
"HPT",
(1945, 9, 30, 1, 59, 59, 0),
),
(
(-765376200, 0),
-Offset::hms(10, 30, 0),
"HST",
(1945, 9, 30, 1, 0, 0, 0),
),
(
(-765376199, 0),
-Offset::hms(10, 30, 0),
"HST",
(1945, 9, 30, 1, 0, 1, 0),
),
(
(-712150201, 0),
-Offset::hms(10, 30, 0),
"HST",
(1947, 6, 8, 1, 59, 59, 0),
),
// At this point, we hit the last transition and the POSIX
// TZ string takes over.
(
(-712150200, 0),
-Offset::hms(10, 0, 0),
"HST",
(1947, 6, 8, 2, 30, 0, 0),
),
(
(-712150199, 0),
-Offset::hms(10, 0, 0),
"HST",
(1947, 6, 8, 2, 30, 1, 0),
),
],
),
// This time zone has an interesting transition where it jumps
// backwards a full day at 1867-10-19T15:30:00.
(
"America/Sitka",
&[
((0, 0), o(-8), "PST", (1969, 12, 31, 16, 0, 0, 0)),
(
(-377705023201, 0),
Offset::hms(14, 58, 47),
"LMT",
(-9999, 1, 2, 16, 58, 46, 0),
),
(
(-3225223728, 0),
Offset::hms(14, 58, 47),
"LMT",
(1867, 10, 19, 15, 29, 59, 0),
),
// Notice the 24 hour time jump backwards a whole day!
(
(-3225223727, 0),
-Offset::hms(9, 1, 13),
"LMT",
(1867, 10, 18, 15, 30, 0, 0),
),
(
(-3225223726, 0),
-Offset::hms(9, 1, 13),
"LMT",
(1867, 10, 18, 15, 30, 1, 0),
),
],
),
];
let db = ConcatenatedTzif::open(ANDROID_CONCATENATED_TZIF).unwrap();
let (mut buf1, mut buf2) = (alloc::vec![], alloc::vec![]);
for &(tzname, timestamps_to_datetimes) in tests {
let tz = db.get(tzname, &mut buf1, &mut buf2).unwrap().unwrap();
for &((unix_sec, unix_nano), offset, abbrev, datetime) in
timestamps_to_datetimes
{
let (year, month, day, hour, min, sec, nano) = datetime;
let timestamp = Timestamp::new(unix_sec, unix_nano).unwrap();
let info = tz.to_offset_info(timestamp);
assert_eq!(
info.offset(),
offset,
"\nTZ={tzname}, timestamp({unix_sec}, {unix_nano})",
);
assert_eq!(
info.abbreviation(),
abbrev,
"\nTZ={tzname}, timestamp({unix_sec}, {unix_nano})",
);
assert_eq!(
info.offset().to_datetime(timestamp),
date(year, month, day).at(hour, min, sec, nano),
"\nTZ={tzname}, timestamp({unix_sec}, {unix_nano})",
);
}
}
}
#[test]
#[cfg(not(miri))]
fn read_all_time_zones() {
let db = ConcatenatedTzif::open(ANDROID_CONCATENATED_TZIF).unwrap();
let available = db.available(&mut alloc::vec![]).unwrap();
let (mut buf1, mut buf2) = (alloc::vec![], alloc::vec![]);
for tzname in available.iter() {
let tz = db.get(tzname, &mut buf1, &mut buf2).unwrap().unwrap();
assert_eq!(tzname, tz.iana_name().unwrap());
}
}
#[test]
fn available_len() {
let db = ConcatenatedTzif::open(ANDROID_CONCATENATED_TZIF).unwrap();
let available = db.available(&mut alloc::vec![]).unwrap();
assert_eq!(596, available.len());
for window in available.windows(2) {
let (x1, x2) = (&window[0], &window[1]);
assert!(x1 < x2, "{x1} is not less than {x2}");
}
}
}