jiff/shared/tzif.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
use alloc::{string::String, vec};
use super::{
util::{
array_str::Abbreviation,
error::{err, Error},
escape::{Byte, Bytes},
itime::{IOffset, ITimestamp},
},
PosixTimeZone, TzifDateTime, TzifFixed, TzifIndicator, TzifLocalTimeType,
TzifOwned, TzifTransitionInfo, TzifTransitionKind, TzifTransitions,
TzifTransitionsOwned,
};
// These are Jiff min and max timestamp (in seconds) values.
//
// The TZif parser will clamp timestamps to this range. It's
// not ideal, but Jiff can't handle values outside of this range
// and completely refusing to use TZif data with pathological
// timestamps in typically irrelevant transitions is bad juju.
//
// Ref: https://github.com/BurntSushi/jiff/issues/163
// Ref: https://github.com/BurntSushi/jiff/pull/164
const TIMESTAMP_MIN: i64 = -377705023201;
const TIMESTAMP_MAX: i64 = 253402207200;
// Similarly for offsets, although in this case, if we find
// an offset outside of this range, we do actually error. This
// is because it could result in true incorrect datetimes for
// actual transitions.
//
// But our supported offset range is `-25:59:59..=+25:59:59`.
// There's no real time zone with offsets even close to those
// boundaries.
//
// If there is pathological data that we should ignore, then
// we should wait for a real bug report in order to determine
// the right way to ignore/clamp it.
const OFFSET_MIN: i32 = -93599;
const OFFSET_MAX: i32 = 93599;
// When fattening TZif data, this is the year to go up to.
//
// This year was chosen because it's what the "fat" TZif data generated
// by `zic` uses.
const FATTEN_UP_TO_YEAR: i16 = 2038;
// This is a "sanity" limit on the maximum number of transitions we'll
// add to TZif data when fattening them up.
//
// This is mostly just a defense-in-depth limit to avoid weird cases
// where a pathological POSIX time zone could be defined to create
// many transitions. It's not clear that this is actually possible,
// but I felt a little uneasy doing unbounded work that isn't linearly
// proportional to the input data. So, this limit is put into place for
// reasons of "good sense."
//
// For "normal" cases, there should be at most two transitions per
// year. So this limit permits 300/2=150 years of transition data.
// (Although we won't go above 2036. See above.)
const FATTEN_MAX_TRANSITIONS: usize = 300;
impl TzifOwned {
/// Parses the given data as a TZif formatted file.
///
/// The name given is attached to the `Tzif` value returned, but is
/// otherwise not significant.
///
/// If the given data is not recognized to be valid TZif, then an error is
/// returned.
///
/// In general, callers may assume that it is safe to pass arbitrary or
/// even untrusted data to this function and count on it not panicking
/// or using resources that aren't limited to a small constant factor of
/// the size of the data itself. That is, callers can reliably limit the
/// resources used by limiting the size of the data given to this parse
/// function.
pub(crate) fn parse(
name: Option<String>,
bytes: &[u8],
) -> Result<TzifOwned, Error> {
let original = bytes;
let name = name.into();
let (header32, rest) = Header::parse(4, bytes)
.map_err(|e| err!("failed to parse 32-bit header: {e}"))?;
let (mut tzif, rest) = if header32.version == 0 {
TzifOwned::parse32(name, header32, rest)?
} else {
TzifOwned::parse64(name, header32, rest)?
};
tzif.fatten();
// This should come after fattening, because fattening may add new
// transitions and we want to add civil datetimes to those.
tzif.add_civil_datetimes_to_transitions();
tzif.verify_posix_time_zone_consistency()?;
// Compute the checksum using the entire contents of the TZif data.
let tzif_raw_len = (rest.as_ptr() as usize)
.checked_sub(original.as_ptr() as usize)
.unwrap();
let tzif_raw_bytes = &original[..tzif_raw_len];
tzif.fixed.checksum = super::crc32::sum(tzif_raw_bytes);
// Shrink all of our allocs so we don't keep excess capacity around.
tzif.fixed.designations.shrink_to_fit();
tzif.types.shrink_to_fit();
tzif.transitions.timestamps.shrink_to_fit();
tzif.transitions.civil_starts.shrink_to_fit();
tzif.transitions.civil_ends.shrink_to_fit();
tzif.transitions.infos.shrink_to_fit();
Ok(tzif)
}
fn parse32<'b>(
name: Option<String>,
header32: Header,
bytes: &'b [u8],
) -> Result<(TzifOwned, &'b [u8]), Error> {
let mut tzif = TzifOwned {
fixed: TzifFixed {
name,
version: header32.version,
// filled in later
checksum: 0,
designations: String::new(),
posix_tz: None,
},
types: vec![],
transitions: TzifTransitions {
timestamps: vec![],
civil_starts: vec![],
civil_ends: vec![],
infos: vec![],
},
};
let rest = tzif.parse_transitions(&header32, bytes)?;
let rest = tzif.parse_transition_types(&header32, rest)?;
let rest = tzif.parse_local_time_types(&header32, rest)?;
let rest = tzif.parse_time_zone_designations(&header32, rest)?;
let rest = tzif.parse_leap_seconds(&header32, rest)?;
let rest = tzif.parse_indicators(&header32, rest)?;
Ok((tzif, rest))
}
fn parse64<'b>(
name: Option<String>,
header32: Header,
bytes: &'b [u8],
) -> Result<(TzifOwned, &'b [u8]), Error> {
let (_, rest) = try_split_at(
"V1 TZif data block",
bytes,
header32.data_block_len()?,
)?;
let (header64, rest) = Header::parse(8, rest)
.map_err(|e| err!("failed to parse 64-bit header: {e}"))?;
let mut tzif = TzifOwned {
fixed: TzifFixed {
name,
version: header64.version,
// filled in later
checksum: 0,
designations: String::new(),
posix_tz: None,
},
types: vec![],
transitions: TzifTransitions {
timestamps: vec![],
civil_starts: vec![],
civil_ends: vec![],
infos: vec![],
},
};
let rest = tzif.parse_transitions(&header64, rest)?;
let rest = tzif.parse_transition_types(&header64, rest)?;
let rest = tzif.parse_local_time_types(&header64, rest)?;
let rest = tzif.parse_time_zone_designations(&header64, rest)?;
let rest = tzif.parse_leap_seconds(&header64, rest)?;
let rest = tzif.parse_indicators(&header64, rest)?;
let rest = tzif.parse_footer(&header64, rest)?;
// Note that we don't check that the TZif data is fully valid. It is
// possible for it to contain superfluous information. For example, a
// non-zero local time type that is never referenced by a transition.
Ok((tzif, rest))
}
fn parse_transitions<'b>(
&mut self,
header: &Header,
bytes: &'b [u8],
) -> Result<&'b [u8], Error> {
let (bytes, rest) = try_split_at(
"transition times data block",
bytes,
header.transition_times_len()?,
)?;
let mut it = bytes.chunks_exact(header.time_size);
// RFC 8536 says: "If there are no transitions, local time for all
// timestamps is specified by the TZ string in the footer if present
// and nonempty; otherwise, it is specified by time type 0."
//
// RFC 8536 also says: "Local time for timestamps before the first
// transition is specified by the first time type (time type
// 0)."
//
// So if there are no transitions, pushing this dummy one will result
// in the desired behavior even when it's the only transition.
// Similarly, since this is the minimum timestamp value, it will
// trigger for any times before the first transition found in the TZif
// data.
self.transitions.add_with_type_index(TIMESTAMP_MIN, 0);
while let Some(chunk) = it.next() {
let mut timestamp = if header.is_32bit() {
i64::from(from_be_bytes_i32(chunk))
} else {
from_be_bytes_i64(chunk)
};
if !(TIMESTAMP_MIN <= timestamp && timestamp <= TIMESTAMP_MAX) {
// We really shouldn't error here just because the Unix
// timestamp is outside what Jiff supports. Since what Jiff
// supports is _somewhat_ arbitrary. But Jiff's supported
// range is good enough for all realistic purposes, so we
// just clamp an out-of-range Unix timestamp to the Jiff
// min or max value.
//
// This can't result in the sorting order being wrong, but
// it can result in a transition that is duplicative with
// the dummy transition we inserted above. This should be
// fine.
let clamped = timestamp.clamp(TIMESTAMP_MIN, TIMESTAMP_MAX);
// only-jiff-start
warn!(
"found Unix timestamp {timestamp} that is outside \
Jiff's supported range, clamping to {clamped}",
);
// only-jiff-end
timestamp = clamped;
}
self.transitions.add(timestamp);
}
assert!(it.remainder().is_empty());
Ok(rest)
}
fn parse_transition_types<'b>(
&mut self,
header: &Header,
bytes: &'b [u8],
) -> Result<&'b [u8], Error> {
let (bytes, rest) = try_split_at(
"transition types data block",
bytes,
header.transition_types_len()?,
)?;
// We skip the first transition because it is our minimum dummy
// transition.
for (transition_index, &type_index) in (1..).zip(bytes) {
if usize::from(type_index) >= header.tzh_typecnt {
return Err(err!(
"found transition type index {type_index},
but there are only {} local time types",
header.tzh_typecnt,
));
}
self.transitions.infos[transition_index].type_index = type_index;
}
Ok(rest)
}
fn parse_local_time_types<'b>(
&mut self,
header: &Header,
bytes: &'b [u8],
) -> Result<&'b [u8], Error> {
let (bytes, rest) = try_split_at(
"local time types data block",
bytes,
header.local_time_types_len()?,
)?;
let mut it = bytes.chunks_exact(6);
while let Some(chunk) = it.next() {
let offset = from_be_bytes_i32(&chunk[..4]);
if !(OFFSET_MIN <= offset && offset <= OFFSET_MAX) {
return Err(err!(
"found local time type with out-of-bounds offset: {offset}"
));
}
let is_dst = chunk[4] == 1;
let designation = (chunk[5], chunk[5]);
self.types.push(TzifLocalTimeType {
offset,
is_dst,
designation,
indicator: TzifIndicator::LocalWall,
});
}
assert!(it.remainder().is_empty());
Ok(rest)
}
fn parse_time_zone_designations<'b>(
&mut self,
header: &Header,
bytes: &'b [u8],
) -> Result<&'b [u8], Error> {
let (bytes, rest) = try_split_at(
"time zone designations data block",
bytes,
header.time_zone_designations_len()?,
)?;
self.fixed.designations =
String::from_utf8(bytes.to_vec()).map_err(|_| {
err!(
"time zone designations are not valid UTF-8: {:?}",
Bytes(bytes),
)
})?;
// Holy hell, this is brutal. The boundary conditions are crazy.
for (i, typ) in self.types.iter_mut().enumerate() {
let start = usize::from(typ.designation.0);
let Some(suffix) = self.fixed.designations.get(start..) else {
return Err(err!(
"local time type {i} has designation index of {start}, \
but cannot be more than {}",
self.fixed.designations.len(),
));
};
let Some(len) = suffix.find('\x00') else {
return Err(err!(
"local time type {i} has designation index of {start}, \
but could not find NUL terminator after it in \
designations: {:?}",
self.fixed.designations,
));
};
let Some(end) = start.checked_add(len) else {
return Err(err!(
"local time type {i} has designation index of {start}, \
but its length {len} is too big",
));
};
typ.designation.1 = u8::try_from(end).map_err(|_| {
err!(
"local time type {i} has designation range of \
{start}..{end}, but end is too big",
)
})?;
}
Ok(rest)
}
/// This parses the leap second corrections in the TZif data.
///
/// Note that we only parse and verify them. We don't actually use them.
/// Jiff effectively ignores leap seconds.
fn parse_leap_seconds<'b>(
&mut self,
header: &Header,
bytes: &'b [u8],
) -> Result<&'b [u8], Error> {
let (bytes, rest) = try_split_at(
"leap seconds data block",
bytes,
header.leap_second_len()?,
)?;
let chunk_len = header
.time_size
.checked_add(4)
.expect("time_size plus 4 fits in usize");
let mut it = bytes.chunks_exact(chunk_len);
while let Some(chunk) = it.next() {
let (occur_bytes, _corr_bytes) = chunk.split_at(header.time_size);
let occur = if header.is_32bit() {
i64::from(from_be_bytes_i32(occur_bytes))
} else {
from_be_bytes_i64(occur_bytes)
};
if !(TIMESTAMP_MIN <= occur && occur <= TIMESTAMP_MAX) {
// only-jiff-start
warn!(
"leap second occurrence {occur} is \
not in Jiff's supported range"
)
// only-jiff-end
}
}
assert!(it.remainder().is_empty());
Ok(rest)
}
fn parse_indicators<'b>(
&mut self,
header: &Header,
bytes: &'b [u8],
) -> Result<&'b [u8], Error> {
let (std_wall_bytes, rest) = try_split_at(
"standard/wall indicators data block",
bytes,
header.standard_wall_len()?,
)?;
let (ut_local_bytes, rest) = try_split_at(
"UT/local indicators data block",
rest,
header.ut_local_len()?,
)?;
if std_wall_bytes.is_empty() && !ut_local_bytes.is_empty() {
// This is a weird case, but technically possible only if all
// UT/local indicators are 0. If any are 1, then it's an error,
// because it would require the corresponding std/wall indicator
// to be 1 too. Which it can't be, because there aren't any. So
// we just check that they're all zeros.
for (i, &byte) in ut_local_bytes.iter().enumerate() {
if byte != 0 {
return Err(err!(
"found UT/local indicator '{byte}' for local time \
type {i}, but it must be 0 since all std/wall \
indicators are 0",
));
}
}
} else if !std_wall_bytes.is_empty() && ut_local_bytes.is_empty() {
for (i, &byte) in std_wall_bytes.iter().enumerate() {
// Indexing is OK because Header guarantees that the number of
// indicators is 0 or equal to the number of types.
self.types[i].indicator = if byte == 0 {
TzifIndicator::LocalWall
} else if byte == 1 {
TzifIndicator::LocalStandard
} else {
return Err(err!(
"found invalid std/wall indicator '{byte}' for \
local time type {i}, it must be 0 or 1",
));
};
}
} else if !std_wall_bytes.is_empty() && !ut_local_bytes.is_empty() {
assert_eq!(std_wall_bytes.len(), ut_local_bytes.len());
let it = std_wall_bytes.iter().zip(ut_local_bytes);
for (i, (&stdwall, &utlocal)) in it.enumerate() {
// Indexing is OK because Header guarantees that the number of
// indicators is 0 or equal to the number of types.
self.types[i].indicator = match (stdwall, utlocal) {
(0, 0) => TzifIndicator::LocalWall,
(1, 0) => TzifIndicator::LocalStandard,
(1, 1) => TzifIndicator::UTStandard,
(0, 1) => {
return Err(err!(
"found illegal ut-wall combination for \
local time type {i}, only local-wall, \
local-standard and ut-standard are allowed",
))
}
_ => {
return Err(err!(
"found illegal std/wall or ut/local value for \
local time type {i}, each must be 0 or 1",
))
}
};
}
} else {
// If they're both empty then we don't need to do anything. Every
// local time type record already has the correct default for this
// case set.
debug_assert!(std_wall_bytes.is_empty());
debug_assert!(ut_local_bytes.is_empty());
}
Ok(rest)
}
fn parse_footer<'b>(
&mut self,
_header: &Header,
bytes: &'b [u8],
) -> Result<&'b [u8], Error> {
if bytes.is_empty() {
return Err(err!(
"invalid V2+ TZif footer, expected \\n, \
but found unexpected end of data",
));
}
if bytes[0] != b'\n' {
return Err(err!(
"invalid V2+ TZif footer, expected {:?}, but found {:?}",
Byte(b'\n'),
Byte(bytes[0]),
));
}
let bytes = &bytes[1..];
// Only scan up to 1KB for a NUL terminator in case we somehow got
// passed a huge block of bytes.
let toscan = &bytes[..bytes.len().min(1024)];
let Some(nlat) = toscan.iter().position(|&b| b == b'\n') else {
return Err(err!(
"invalid V2 TZif footer, could not find {:?} \
terminator in: {:?}",
Byte(b'\n'),
Bytes(toscan),
));
};
let (bytes, rest) = bytes.split_at(nlat);
if !bytes.is_empty() {
// We could in theory limit TZ strings to their strict POSIX
// definition here for TZif V2, but I don't think there is any
// harm in allowing the extensions in V2 formatted TZif data. Note
// that the GNU tooling allow it via the `TZ` environment variable
// even though POSIX doesn't specify it. This all seems okay to me
// because the V3+ extension is a strict superset of functionality.
let posix_tz =
PosixTimeZone::parse(bytes).map_err(|e| err!("{e}"))?;
self.fixed.posix_tz = Some(posix_tz);
}
Ok(&rest[1..])
}
/// Validates that the POSIX TZ string we parsed (if one exists) is
/// consistent with the last transition in this time zone. This is
/// required by RFC 8536.
///
/// RFC 8536 says, "If the string is nonempty and one or more
/// transitions appear in the version 2+ data, the string MUST be
/// consistent with the last version 2+ transition."
fn verify_posix_time_zone_consistency(&self) -> Result<(), Error> {
// We need to be a little careful, since we always have at least one
// transition (accounting for the dummy `Timestamp::MIN` transition).
// So if we only have 1 transition and a POSIX TZ string, then we
// should not validate it since it's equivalent to the case of 0
// transitions and a POSIX TZ string.
if self.transitions.timestamps.len() <= 1 {
return Ok(());
}
let Some(ref tz) = self.fixed.posix_tz else {
return Ok(());
};
let last = self
.transitions
.timestamps
.last()
.expect("last transition timestamp");
let type_index = self
.transitions
.infos
.last()
.expect("last transition info")
.type_index;
let typ = &self.types[usize::from(type_index)];
let (ioff, abbrev, is_dst) =
tz.to_offset_info(ITimestamp::from_second(*last));
if ioff.second != typ.offset {
return Err(err!(
"expected last transition to have DST offset \
of {expected_offset}, but got {got_offset} \
according to POSIX TZ string {tz}",
expected_offset = typ.offset,
got_offset = ioff.second,
tz = tz,
));
}
if is_dst != typ.is_dst {
return Err(err!(
"expected last transition to have is_dst={expected_dst}, \
but got is_dst={got_dst} according to POSIX TZ \
string {tz}",
expected_dst = typ.is_dst,
got_dst = is_dst,
tz = tz,
));
}
if abbrev != self.designation(&typ) {
return Err(err!(
"expected last transition to have \
designation={expected_abbrev}, \
but got designation={got_abbrev} according to POSIX TZ \
string {tz}",
expected_abbrev = self.designation(&typ),
got_abbrev = abbrev,
tz = tz,
));
}
Ok(())
}
/// Add civil datetimes to our transitions.
///
/// This isn't strictly necessary, but it speeds up time zone lookups when
/// the input is a civil datetime. It lets us do comparisons directly on
/// the civil datetime as given, instead of needing to convert the civil
/// datetime given to a timestamp first. (Even if we didn't do this, I
/// believe we'd still need at least one additional timestamp that is
/// offset, because TZ lookups for a civil datetime are done in local time,
/// and the timestamps in TZif data are, of course, all in UTC.)
fn add_civil_datetimes_to_transitions(&mut self) {
fn to_datetime(timestamp: i64, offset: i32) -> TzifDateTime {
use crate::shared::util::itime::{IOffset, ITimestamp};
let its = ITimestamp { second: timestamp, nanosecond: 0 };
let ioff = IOffset { second: offset };
let dt = its.to_datetime(ioff);
TzifDateTime::new(
dt.date.year,
dt.date.month,
dt.date.day,
dt.time.hour,
dt.time.minute,
dt.time.second,
)
}
let trans = &mut self.transitions;
for i in 0..trans.timestamps.len() {
let timestamp = trans.timestamps[i];
let offset = {
let type_index = trans.infos[i].type_index;
self.types[usize::from(type_index)].offset
};
let prev_offset = {
let type_index = trans.infos[i.saturating_sub(1)].type_index;
self.types[usize::from(type_index)].offset
};
if prev_offset == offset {
// Equivalent offsets means there can never be any ambiguity.
let start = to_datetime(timestamp, prev_offset);
trans.infos[i].kind = TzifTransitionKind::Unambiguous;
trans.civil_starts[i] = start;
} else if prev_offset < offset {
// When the offset of the previous transition is less, that
// means there is some non-zero amount of time that is
// "skipped" when moving to the next transition. Thus, we have
// a gap. The start of the gap is the offset which gets us the
// earliest time, i.e., the smaller of the two offsets.
trans.infos[i].kind = TzifTransitionKind::Gap;
trans.civil_starts[i] = to_datetime(timestamp, prev_offset);
trans.civil_ends[i] = to_datetime(timestamp, offset);
} else {
// When the offset of the previous transition is greater, that
// means there is some non-zero amount of time that will be
// replayed on a wall clock in this time zone. Thus, we have
// a fold. The start of the gold is the offset which gets us
// the earliest time, i.e., the smaller of the two offsets.
assert!(prev_offset > offset);
trans.infos[i].kind = TzifTransitionKind::Fold;
trans.civil_starts[i] = to_datetime(timestamp, offset);
trans.civil_ends[i] = to_datetime(timestamp, prev_offset);
}
}
}
/// Fatten up this TZif data with additional transitions.
///
/// These additional transitions often make time zone lookups faster, and
/// they smooth out the performance difference between using "slim" and
/// "fat" tzdbs.
fn fatten(&mut self) {
// Note that this is a crate feature for *both* `jiff` and
// `jiff-static`.
if !cfg!(feature = "tz-fat") {
return;
}
let Some(posix_tz) = self.fixed.posix_tz.clone() else { return };
let last =
self.transitions.timestamps.last().expect("last transition");
let mut i = 0;
let mut prev = ITimestamp::from_second(*last);
loop {
if i > FATTEN_MAX_TRANSITIONS {
// only-jiff-start
warn!(
"fattening TZif data for `{name:?}` somehow generated \
more than {max} transitions, so giving up to avoid \
doing too much work",
name = self.fixed.name,
max = FATTEN_MAX_TRANSITIONS,
);
// only-jiff-end
return;
}
i += 1;
prev = match self.add_transition(&posix_tz, prev) {
None => break,
Some(next) => next,
};
}
}
/// If there's a transition strictly after the given timestamp for the
/// given POSIX time zone, then add it to this TZif data.
fn add_transition(
&mut self,
posix_tz: &PosixTimeZone<Abbreviation>,
prev: ITimestamp,
) -> Option<ITimestamp> {
let (its, ioff, abbrev, is_dst) = posix_tz.next_transition(prev)?;
if its.to_datetime(IOffset::UTC).date.year >= FATTEN_UP_TO_YEAR {
return None;
}
let type_index =
self.find_or_create_local_time_type(ioff, abbrev, is_dst)?;
self.transitions.add_with_type_index(its.second, type_index);
Some(its)
}
/// Look for a local time type matching the data given.
///
/// If one could not be found, then one is created and its index is
/// returned.
///
/// If one could not be found and one could not be created (e.g., the index
/// would overflow `u8`), then `None` is returned.
fn find_or_create_local_time_type(
&mut self,
offset: IOffset,
abbrev: &str,
is_dst: bool,
) -> Option<u8> {
for (i, typ) in self.types.iter().enumerate() {
if offset.second == typ.offset
&& abbrev == self.designation(typ)
&& is_dst == typ.is_dst
{
return u8::try_from(i).ok();
}
}
let i = u8::try_from(self.types.len()).ok()?;
let designation = self.find_or_create_designation(abbrev)?;
self.types.push(TzifLocalTimeType {
offset: offset.second,
is_dst,
designation,
// Not really clear if this is correct, but Jiff
// ignores this anyway, so ¯\_(ツ)_/¯.
indicator: TzifIndicator::LocalWall,
});
Some(i)
}
/// Look for a designation (i.e., time zone abbreviation) matching the data
/// given, and return its range into `self.fixed.designations`.
///
/// If one could not be found, then one is created and its range is
/// returned.
///
/// If one could not be found and one could not be created (e.g., the range
/// would overflow `u8`), then `None` is returned.
fn find_or_create_designation(
&mut self,
needle: &str,
) -> Option<(u8, u8)> {
let mut start = 0;
while let Some(offset) = self.fixed.designations[start..].find('\0') {
let end = start + offset;
let abbrev = &self.fixed.designations[start..end];
if needle == abbrev {
return Some((start.try_into().ok()?, end.try_into().ok()?));
}
start = end + 1;
}
self.fixed.designations.push_str(needle);
self.fixed.designations.push('\0');
let end = start + needle.len();
Some((start.try_into().ok()?, end.try_into().ok()?))
}
fn designation(&self, typ: &TzifLocalTimeType) -> &str {
let range =
usize::from(typ.designation.0)..usize::from(typ.designation.1);
// OK because we verify that the designation range on every local
// time type is a valid range into `self.designations`.
&self.fixed.designations[range]
}
}
impl TzifTransitionsOwned {
/// Add a single transition with the given timestamp.
///
/// This also fills in the other columns (civil starts, civil ends and
/// infos) with sensible default values. It is expected that callers will
/// later fill them in.
fn add(&mut self, timestamp: i64) {
self.add_with_type_index(timestamp, 0);
}
/// Like `TzifTransitionsOwned::add`, but let's the caller provide a type
/// index if it is known.
fn add_with_type_index(&mut self, timestamp: i64, type_index: u8) {
self.timestamps.push(timestamp);
self.civil_starts.push(TzifDateTime::ZERO);
self.civil_ends.push(TzifDateTime::ZERO);
self.infos.push(TzifTransitionInfo {
type_index,
kind: TzifTransitionKind::Unambiguous,
});
}
}
/// The header for a TZif formatted file.
///
/// V2+ TZif format have two headers: one for V1 data, and then a second
/// following the V1 data block that describes another data block which uses
/// 64-bit timestamps. The two headers both have the same format and both
/// use 32-bit big-endian encoded integers.
#[derive(Debug)]
struct Header {
/// The size of the timestamps encoded in the data block.
///
/// This is guaranteed to be either 4 (for V1) or 8 (for the 64-bit header
/// block in V2+).
time_size: usize,
/// The file format version.
///
/// Note that this is either a NUL byte (for version 1), or an ASCII byte
/// corresponding to the version number. That is, `0x32` for `2`, `0x33`
/// for `3` or `0x34` for `4`. Note also that just because zoneinfo might
/// have been recently generated does not mean it uses the latest format
/// version. It seems like newer versions are only compiled by `zic` when
/// they are needed. For example, `America/New_York` on my system (as of
/// `2024-03-25`) has version `0x32`, but `Asia/Jerusalem` has version
/// `0x33`.
version: u8,
/// Number of UT/local indicators stored in the file.
///
/// This is checked to be either equal to `0` or equal to `tzh_typecnt`.
tzh_ttisutcnt: usize,
/// The number of standard/wall indicators stored in the file.
///
/// This is checked to be either equal to `0` or equal to `tzh_typecnt`.
tzh_ttisstdcnt: usize,
/// The number of leap seconds for which data entries are stored in the
/// file.
tzh_leapcnt: usize,
/// The number of transition times for which data entries are stored in
/// the file.
tzh_timecnt: usize,
/// The number of local time types for which data entries are stored in the
/// file.
///
/// This is checked to be at least `1`.
tzh_typecnt: usize,
/// The number of bytes of time zone abbreviation strings stored in the
/// file.
///
/// This is checked to be at least `1`.
tzh_charcnt: usize,
}
impl Header {
/// Parse the header record from the given bytes.
///
/// Upon success, return the header and all bytes after the header.
///
/// The given `time_size` must be 4 or 8, corresponding to either the
/// V1 header block or the V2+ header block, respectively.
fn parse(
time_size: usize,
bytes: &[u8],
) -> Result<(Header, &[u8]), Error> {
assert!(time_size == 4 || time_size == 8, "time size must be 4 or 8");
if bytes.len() < 44 {
return Err(err!("invalid header: too short"));
}
let (magic, rest) = bytes.split_at(4);
if magic != b"TZif" {
return Err(err!("invalid header: magic bytes mismatch"));
}
let (version, rest) = rest.split_at(1);
let (_reserved, rest) = rest.split_at(15);
let (tzh_ttisutcnt_bytes, rest) = rest.split_at(4);
let (tzh_ttisstdcnt_bytes, rest) = rest.split_at(4);
let (tzh_leapcnt_bytes, rest) = rest.split_at(4);
let (tzh_timecnt_bytes, rest) = rest.split_at(4);
let (tzh_typecnt_bytes, rest) = rest.split_at(4);
let (tzh_charcnt_bytes, rest) = rest.split_at(4);
let tzh_ttisutcnt = from_be_bytes_u32_to_usize(tzh_ttisutcnt_bytes)
.map_err(|e| err!("failed to parse tzh_ttisutcnt: {e}"))?;
let tzh_ttisstdcnt = from_be_bytes_u32_to_usize(tzh_ttisstdcnt_bytes)
.map_err(|e| err!("failed to parse tzh_ttisstdcnt: {e}"))?;
let tzh_leapcnt = from_be_bytes_u32_to_usize(tzh_leapcnt_bytes)
.map_err(|e| err!("failed to parse tzh_leapcnt: {e}"))?;
let tzh_timecnt = from_be_bytes_u32_to_usize(tzh_timecnt_bytes)
.map_err(|e| err!("failed to parse tzh_timecnt: {e}"))?;
let tzh_typecnt = from_be_bytes_u32_to_usize(tzh_typecnt_bytes)
.map_err(|e| err!("failed to parse tzh_typecnt: {e}"))?;
let tzh_charcnt = from_be_bytes_u32_to_usize(tzh_charcnt_bytes)
.map_err(|e| err!("failed to parse tzh_charcnt: {e}"))?;
if tzh_ttisutcnt != 0 && tzh_ttisutcnt != tzh_typecnt {
return Err(err!(
"expected tzh_ttisutcnt={tzh_ttisutcnt} to be zero \
or equal to tzh_typecnt={tzh_typecnt}",
));
}
if tzh_ttisstdcnt != 0 && tzh_ttisstdcnt != tzh_typecnt {
return Err(err!(
"expected tzh_ttisstdcnt={tzh_ttisstdcnt} to be zero \
or equal to tzh_typecnt={tzh_typecnt}",
));
}
if tzh_typecnt < 1 {
return Err(err!(
"expected tzh_typecnt={tzh_typecnt} to be at least 1",
));
}
if tzh_charcnt < 1 {
return Err(err!(
"expected tzh_charcnt={tzh_charcnt} to be at least 1",
));
}
let header = Header {
time_size,
version: version[0],
tzh_ttisutcnt,
tzh_ttisstdcnt,
tzh_leapcnt,
tzh_timecnt,
tzh_typecnt,
tzh_charcnt,
};
Ok((header, rest))
}
/// Returns true if this header is for a 32-bit data block.
///
/// When false, it is guaranteed that this header is for a 64-bit data
/// block.
fn is_32bit(&self) -> bool {
self.time_size == 4
}
/// Returns the size of the data block, in bytes, for this header.
///
/// This returns an error if the arithmetic required to compute the
/// length would overflow.
///
/// This is useful for, e.g., skipping over the 32-bit V1 data block in
/// V2+ TZif formatted files.
fn data_block_len(&self) -> Result<usize, Error> {
let a = self.transition_times_len()?;
let b = self.transition_types_len()?;
let c = self.local_time_types_len()?;
let d = self.time_zone_designations_len()?;
let e = self.leap_second_len()?;
let f = self.standard_wall_len()?;
let g = self.ut_local_len()?;
a.checked_add(b)
.and_then(|z| z.checked_add(c))
.and_then(|z| z.checked_add(d))
.and_then(|z| z.checked_add(e))
.and_then(|z| z.checked_add(f))
.and_then(|z| z.checked_add(g))
.ok_or_else(|| {
err!(
"length of data block in V{} tzfile is too big",
self.version
)
})
}
fn transition_times_len(&self) -> Result<usize, Error> {
self.tzh_timecnt.checked_mul(self.time_size).ok_or_else(|| {
err!("tzh_timecnt value {} is too big", self.tzh_timecnt)
})
}
fn transition_types_len(&self) -> Result<usize, Error> {
Ok(self.tzh_timecnt)
}
fn local_time_types_len(&self) -> Result<usize, Error> {
self.tzh_typecnt.checked_mul(6).ok_or_else(|| {
err!("tzh_typecnt value {} is too big", self.tzh_typecnt)
})
}
fn time_zone_designations_len(&self) -> Result<usize, Error> {
Ok(self.tzh_charcnt)
}
fn leap_second_len(&self) -> Result<usize, Error> {
let record_len = self
.time_size
.checked_add(4)
.expect("4-or-8 plus 4 always fits in usize");
self.tzh_leapcnt.checked_mul(record_len).ok_or_else(|| {
err!("tzh_leapcnt value {} is too big", self.tzh_leapcnt)
})
}
fn standard_wall_len(&self) -> Result<usize, Error> {
Ok(self.tzh_ttisstdcnt)
}
fn ut_local_len(&self) -> Result<usize, Error> {
Ok(self.tzh_ttisutcnt)
}
}
/// Splits the given slice of bytes at the index given.
///
/// If the index is out of range (greater than `bytes.len()`) then an error is
/// returned. The error message will include the `what` string given, which is
/// meant to describe the thing being split.
fn try_split_at<'b>(
what: &'static str,
bytes: &'b [u8],
at: usize,
) -> Result<(&'b [u8], &'b [u8]), Error> {
if at > bytes.len() {
Err(err!(
"expected at least {at} bytes for {what}, \
but found only {} bytes",
bytes.len(),
))
} else {
Ok(bytes.split_at(at))
}
}
/// Interprets the given slice as an unsigned 32-bit big endian integer,
/// attempts to convert it to a `usize` and returns it.
///
/// # Panics
///
/// When `bytes.len() != 4`.
///
/// # Errors
///
/// This errors if the `u32` parsed from the given bytes cannot fit in a
/// `usize`.
fn from_be_bytes_u32_to_usize(bytes: &[u8]) -> Result<usize, Error> {
let n = from_be_bytes_u32(bytes);
usize::try_from(n).map_err(|_| {
err!(
"failed to parse integer {n} (too big, max allowed is {}",
usize::MAX
)
})
}
/// Interprets the given slice as an unsigned 32-bit big endian integer and
/// returns it.
///
/// # Panics
///
/// When `bytes.len() != 4`.
fn from_be_bytes_u32(bytes: &[u8]) -> u32 {
u32::from_be_bytes(bytes.try_into().unwrap())
}
/// Interprets the given slice as a signed 32-bit big endian integer and
/// returns it.
///
/// # Panics
///
/// When `bytes.len() != 4`.
fn from_be_bytes_i32(bytes: &[u8]) -> i32 {
i32::from_be_bytes(bytes.try_into().unwrap())
}
/// Interprets the given slice as a signed 64-bit big endian integer and
/// returns it.
///
/// # Panics
///
/// When `bytes.len() != 8`.
fn from_be_bytes_i64(bytes: &[u8]) -> i64 {
i64::from_be_bytes(bytes.try_into().unwrap())
}