jiff/fmt/util.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
use crate::{
error::{err, ErrorContext},
fmt::Parsed,
util::{
escape, parse,
rangeint::RFrom,
t::{self, C},
},
Error, SignedDuration, Span, Unit,
};
/// A simple formatter for converting `i64` values to ASCII byte strings.
///
/// This avoids going through the formatting machinery which seems to
/// substantially slow things down.
///
/// The `itoa` crate does the same thing as this formatter, but is a bit
/// faster. We roll our own which is a bit slower, but gets us enough of a win
/// to be satisfied with and with (almost) pure safe code.
///
/// By default, this only includes the sign if it's negative. To always include
/// the sign, set `force_sign` to `true`.
#[derive(Clone, Copy, Debug)]
pub(crate) struct DecimalFormatter {
force_sign: Option<bool>,
minimum_digits: u8,
padding_byte: u8,
}
impl DecimalFormatter {
/// Creates a new decimal formatter using the default configuration.
pub(crate) const fn new() -> DecimalFormatter {
DecimalFormatter {
force_sign: None,
minimum_digits: 0,
padding_byte: b'0',
}
}
/// Format the given value using this configuration as a decimal ASCII
/// number.
#[cfg(test)]
pub(crate) const fn format(&self, value: i64) -> Decimal {
Decimal::new(self, value)
}
/// Forces the sign to be rendered, even if it's positive.
///
/// When `zero_is_positive` is true, then a zero value is formatted with a
/// positive sign. Otherwise, it is formatted with a negative sign.
#[cfg(test)]
pub(crate) const fn force_sign(
self,
zero_is_positive: bool,
) -> DecimalFormatter {
DecimalFormatter { force_sign: Some(zero_is_positive), ..self }
}
/// The minimum number of digits/padding that this number should be
/// formatted with. If the number would have fewer digits than this, then
/// it is padded out with the padding byte (which is zero by default) until
/// the minimum is reached.
///
/// The minimum number of digits is capped at the maximum number of digits
/// for an i64 value (which is 19).
pub(crate) const fn padding(self, mut digits: u8) -> DecimalFormatter {
if digits > Decimal::MAX_I64_DIGITS {
digits = Decimal::MAX_I64_DIGITS;
}
DecimalFormatter { minimum_digits: digits, ..self }
}
/// The padding byte to use when `padding` is set.
///
/// The default is `0`.
pub(crate) const fn padding_byte(self, byte: u8) -> DecimalFormatter {
DecimalFormatter { padding_byte: byte, ..self }
}
}
impl Default for DecimalFormatter {
fn default() -> DecimalFormatter {
DecimalFormatter::new()
}
}
/// A formatted decimal number that can be converted to a sequence of bytes.
#[derive(Debug)]
pub(crate) struct Decimal {
buf: [u8; Self::MAX_I64_LEN as usize],
start: u8,
end: u8,
}
impl Decimal {
/// Discovered via `i64::MIN.to_string().len()`.
const MAX_I64_LEN: u8 = 20;
/// Discovered via `i64::MAX.to_string().len()`.
const MAX_I64_DIGITS: u8 = 19;
/// Using the given formatter, turn the value given into a decimal
/// representation using ASCII bytes.
pub(crate) const fn new(
formatter: &DecimalFormatter,
value: i64,
) -> Decimal {
let sign = value.signum();
let Some(mut value) = value.checked_abs() else {
let buf = [
b'-', b'9', b'2', b'2', b'3', b'3', b'7', b'2', b'0', b'3',
b'6', b'8', b'5', b'4', b'7', b'7', b'5', b'8', b'0', b'8',
];
return Decimal { buf, start: 0, end: Self::MAX_I64_LEN };
};
let mut decimal = Decimal {
buf: [0; Self::MAX_I64_LEN as usize],
start: Self::MAX_I64_LEN,
end: Self::MAX_I64_LEN,
};
loop {
decimal.start -= 1;
let digit = (value % 10) as u8;
value /= 10;
decimal.buf[decimal.start as usize] = b'0' + digit;
if value == 0 {
break;
}
}
while decimal.len() < formatter.minimum_digits {
decimal.start -= 1;
decimal.buf[decimal.start as usize] = formatter.padding_byte;
}
if sign < 0 {
decimal.start -= 1;
decimal.buf[decimal.start as usize] = b'-';
} else if let Some(zero_is_positive) = formatter.force_sign {
let ascii_sign =
if sign > 0 || zero_is_positive { b'+' } else { b'-' };
decimal.start -= 1;
decimal.buf[decimal.start as usize] = ascii_sign;
}
decimal
}
/// Returns the total number of ASCII bytes (including the sign) that are
/// used to represent this decimal number.
#[inline]
const fn len(&self) -> u8 {
self.end - self.start
}
/// Returns the ASCII representation of this decimal as a byte slice.
///
/// The slice returned is guaranteed to be valid ASCII.
#[inline]
pub(crate) fn as_bytes(&self) -> &[u8] {
&self.buf[usize::from(self.start)..usize::from(self.end)]
}
/// Returns the ASCII representation of this decimal as a string slice.
#[inline]
pub(crate) fn as_str(&self) -> &str {
// SAFETY: This is safe because all bytes written to `self.buf` are
// guaranteed to be ASCII (including in its initial state), and thus,
// any subsequence is guaranteed to be valid UTF-8.
unsafe { core::str::from_utf8_unchecked(self.as_bytes()) }
}
}
/// A simple formatter for converting fractional components to ASCII byte
/// strings.
///
/// We only support precision to 9 decimal places, which corresponds to
/// nanosecond precision as a fractional second component.
#[derive(Clone, Copy, Debug)]
pub(crate) struct FractionalFormatter {
precision: Option<u8>,
}
impl FractionalFormatter {
/// Creates a new fractional formatter using the given precision settings.
pub(crate) const fn new() -> FractionalFormatter {
FractionalFormatter { precision: None }
}
/// Format the given value using this configuration as a decimal ASCII
/// fractional number.
pub(crate) const fn format(&self, value: i64) -> Fractional {
Fractional::new(self, value)
}
/// Set the precision.
///
/// If the `precision` is greater than `9`, then it is clamped to `9`.
///
/// When the precision is not set, then it is automatically determined
/// based on the value.
pub(crate) const fn precision(
self,
precision: Option<u8>,
) -> FractionalFormatter {
let precision = match precision {
None => None,
Some(p) if p > 9 => Some(9),
Some(p) => Some(p),
};
FractionalFormatter { precision, ..self }
}
/// Returns true if and only if at least one digit will be written for the
/// given value.
///
/// This is useful for callers that need to know whether to write
/// a decimal separator, e.g., `.`, before the digits.
pub(crate) fn will_write_digits(self, value: i64) -> bool {
self.precision.map_or_else(|| value != 0, |p| p > 0)
}
/// Returns true if and only if this formatter has an explicit non-zero
/// precision setting.
///
/// This is useful for determining whether something like `0.000` needs to
/// be written in the case of a `precision=Some(3)` setting and a zero
/// value.
pub(crate) fn has_non_zero_fixed_precision(self) -> bool {
self.precision.map_or(false, |p| p > 0)
}
/// Returns true if and only if this formatter has fixed zero precision.
/// That is, no matter what is given as input, a fraction is never written.
pub(crate) fn has_zero_fixed_precision(self) -> bool {
self.precision.map_or(false, |p| p == 0)
}
}
/// A formatted fractional number that can be converted to a sequence of bytes.
#[derive(Debug)]
pub(crate) struct Fractional {
buf: [u8; Self::MAX_LEN as usize],
end: u8,
}
impl Fractional {
/// Since we don't support precision bigger than this.
const MAX_LEN: u8 = 9;
/// Using the given formatter, turn the value given into a fractional
/// decimal representation using ASCII bytes.
///
/// Note that the fractional number returned *may* expand to an empty
/// slice of bytes. This occurs whenever the precision is set to `0`, or
/// when the precision is not set and the value is `0`. Any non-zero
/// explicitly set precision guarantees that the slice returned is not
/// empty.
///
/// This panics if the value given isn't in the range `0..=999_999_999`.
pub(crate) const fn new(
formatter: &FractionalFormatter,
mut value: i64,
) -> Fractional {
assert!(0 <= value && value <= 999_999_999);
let mut fractional = Fractional {
buf: [b'0'; Self::MAX_LEN as usize],
end: Self::MAX_LEN,
};
let mut i = 9;
loop {
i -= 1;
let digit = (value % 10) as u8;
value /= 10;
fractional.buf[i] += digit;
if value == 0 {
break;
}
}
if let Some(precision) = formatter.precision {
fractional.end = precision;
} else {
while fractional.end > 0
&& fractional.buf[fractional.end as usize - 1] == b'0'
{
fractional.end -= 1;
}
}
fractional
}
/// Returns the ASCII representation of this fractional number as a byte
/// slice. The slice returned may be empty.
///
/// The slice returned is guaranteed to be valid ASCII.
pub(crate) fn as_bytes(&self) -> &[u8] {
&self.buf[..usize::from(self.end)]
}
/// Returns the ASCII representation of this fractional number as a string
/// slice. The slice returned may be empty.
pub(crate) fn as_str(&self) -> &str {
// SAFETY: This is safe because all bytes written to `self.buf` are
// guaranteed to be ASCII (including in its initial state), and thus,
// any subsequence is guaranteed to be valid UTF-8.
unsafe { core::str::from_utf8_unchecked(self.as_bytes()) }
}
}
/// Parses an optional fractional number from the start of `input`.
///
/// If `input` does not begin with a `.` (or a `,`), then this returns `None`
/// and no input is consumed. Otherwise, up to 9 ASCII digits are parsed after
/// the decimal separator.
///
/// While this is most typically used to parse the fractional component of
/// second units, it is also used to parse the fractional component of hours or
/// minutes in ISO 8601 duration parsing, and milliseconds and microseconds in
/// the "friendly" duration format. The return type in that case is obviously a
/// misnomer, but the range of possible values is still correct. (That is, the
/// fractional component of an hour is still limited to 9 decimal places per
/// the Temporal spec.)
#[inline(always)]
pub(crate) fn parse_temporal_fraction<'i>(
input: &'i [u8],
) -> Result<Parsed<'i, Option<t::SubsecNanosecond>>, Error> {
// TimeFraction :::
// TemporalDecimalFraction
//
// TemporalDecimalFraction :::
// TemporalDecimalSeparator DecimalDigit
// TemporalDecimalSeparator DecimalDigit DecimalDigit
// TemporalDecimalSeparator DecimalDigit DecimalDigit DecimalDigit
// TemporalDecimalSeparator DecimalDigit DecimalDigit DecimalDigit
// DecimalDigit
// TemporalDecimalSeparator DecimalDigit DecimalDigit DecimalDigit
// DecimalDigit DecimalDigit
// TemporalDecimalSeparator DecimalDigit DecimalDigit DecimalDigit
// DecimalDigit DecimalDigit DecimalDigit
// TemporalDecimalSeparator DecimalDigit DecimalDigit DecimalDigit
// DecimalDigit DecimalDigit DecimalDigit
// DecimalDigit
// TemporalDecimalSeparator DecimalDigit DecimalDigit DecimalDigit
// DecimalDigit DecimalDigit DecimalDigit
// DecimalDigit DecimalDigit
// TemporalDecimalSeparator DecimalDigit DecimalDigit DecimalDigit
// DecimalDigit DecimalDigit DecimalDigit
// DecimalDigit DecimalDigit DecimalDigit
//
// TemporalDecimalSeparator ::: one of
// . ,
//
// DecimalDigit :: one of
// 0 1 2 3 4 5 6 7 8 9
#[inline(never)]
fn imp<'i>(
mut input: &'i [u8],
) -> Result<Parsed<'i, Option<t::SubsecNanosecond>>, Error> {
let mkdigits = parse::slicer(input);
while mkdigits(input).len() <= 8
&& input.first().map_or(false, u8::is_ascii_digit)
{
input = &input[1..];
}
let digits = mkdigits(input);
if digits.is_empty() {
return Err(err!(
"found decimal after seconds component, \
but did not find any decimal digits after decimal",
));
}
// I believe this error can never happen, since we know we have no more
// than 9 ASCII digits. Any sequence of 9 ASCII digits can be parsed
// into an `i64`.
let nanoseconds = parse::fraction(digits, 9).map_err(|err| {
err!(
"failed to parse {digits:?} as fractional component \
(up to 9 digits, nanosecond precision): {err}",
digits = escape::Bytes(digits),
)
})?;
// I believe this is also impossible to fail, since the maximal
// fractional nanosecond is 999_999_999, and which also corresponds
// to the maximal expressible number with 9 ASCII digits. So every
// possible expressible value here is in range.
let nanoseconds =
t::SubsecNanosecond::try_new("nanoseconds", nanoseconds).map_err(
|err| err!("fractional nanoseconds are not valid: {err}"),
)?;
Ok(Parsed { value: Some(nanoseconds), input })
}
if input.is_empty() || (input[0] != b'.' && input[0] != b',') {
return Ok(Parsed { value: None, input });
}
imp(&input[1..])
}
/// This routine returns a span based on the given with fractional time applied
/// to it.
///
/// For example, given a span like `P1dT1.5h`, the `unit` would be
/// `Unit::Hour`, the `value` would be `1` and the `fraction` would be
/// `500_000_000`. The span given would just be `1d`. The span returned would
/// be `P1dT1h30m`.
///
/// Note that `fraction` can be a fractional hour, minute, second, millisecond
/// or microsecond (even though its type suggests its only a fraction of a
/// second). When milliseconds or microseconds, the given fraction has any
/// sub-nanosecond precision truncated.
///
/// # Errors
///
/// This can error if the resulting units would be too large for the limits on
/// a `span`. This also errors if `unit` is not `Hour`, `Minute`, `Second`,
/// `Millisecond` or `Microsecond`.
#[inline(never)]
pub(crate) fn fractional_time_to_span(
unit: Unit,
value: t::NoUnits,
fraction: t::SubsecNanosecond,
mut span: Span,
) -> Result<Span, Error> {
let allowed = matches!(
unit,
Unit::Hour
| Unit::Minute
| Unit::Second
| Unit::Millisecond
| Unit::Microsecond
);
if !allowed {
return Err(err!(
"fractional {unit} units are not allowed",
unit = unit.singular(),
));
}
// We switch everything over to nanoseconds and then divy that up as
// appropriate. In general, we always create a balanced span, but there
// are some cases where we can't. For example, if one serializes a span
// with both the maximum number of seconds and the maximum number of
// milliseconds, then this just can't be balanced due to the limits on
// each of the units. When this kind of span is serialized to a string,
// it results in a second value that is actually bigger than the maximum
// allowed number of seconds in a span. So here, we have to reverse that
// operation and spread the seconds over smaller units. This in turn
// creates an unbalanced span. Annoying.
//
// The above is why we have `if unit_value > MAX { <do adjustments> }` in
// the balancing code below. Basically, if we overshoot our limit, we back
// out anything over the limit and carry it over to the lesser units. If
// our value is truly too big, then the final call to set nanoseconds will
// fail.
let value = t::NoUnits128::rfrom(value);
let fraction = t::NoUnits128::rfrom(fraction);
let mut nanos = match unit {
Unit::Hour => {
(value * t::NANOS_PER_HOUR) + (fraction * t::SECONDS_PER_HOUR)
}
Unit::Minute => {
(value * t::NANOS_PER_MINUTE) + (fraction * t::SECONDS_PER_MINUTE)
}
Unit::Second => (value * t::NANOS_PER_SECOND) + fraction,
Unit::Millisecond => {
(value * t::NANOS_PER_MILLI) + (fraction / t::NANOS_PER_MICRO)
}
Unit::Microsecond => {
(value * t::NANOS_PER_MICRO) + (fraction / t::NANOS_PER_MILLI)
}
// We return an error above if we hit this case.
_ => unreachable!("unsupported unit: {unit:?}"),
};
if unit >= Unit::Hour && nanos > C(0) {
let mut hours = nanos / t::NANOS_PER_HOUR;
nanos %= t::NANOS_PER_HOUR;
if hours > t::SpanHours::MAX_SELF {
nanos += (hours - t::SpanHours::MAX_SELF) * t::NANOS_PER_HOUR;
hours = t::NoUnits128::rfrom(t::SpanHours::MAX_SELF);
}
// OK because we just checked that our units are in range.
span = span.try_hours_ranged(hours).unwrap();
}
if unit >= Unit::Minute && nanos > C(0) {
let mut minutes = nanos / t::NANOS_PER_MINUTE;
nanos %= t::NANOS_PER_MINUTE;
if minutes > t::SpanMinutes::MAX_SELF {
nanos +=
(minutes - t::SpanMinutes::MAX_SELF) * t::NANOS_PER_MINUTE;
minutes = t::NoUnits128::rfrom(t::SpanMinutes::MAX_SELF);
}
// OK because we just checked that our units are in range.
span = span.try_minutes_ranged(minutes).unwrap();
}
if unit >= Unit::Second && nanos > C(0) {
let mut seconds = nanos / t::NANOS_PER_SECOND;
nanos %= t::NANOS_PER_SECOND;
if seconds > t::SpanSeconds::MAX_SELF {
nanos +=
(seconds - t::SpanSeconds::MAX_SELF) * t::NANOS_PER_SECOND;
seconds = t::NoUnits128::rfrom(t::SpanSeconds::MAX_SELF);
}
// OK because we just checked that our units are in range.
span = span.try_seconds_ranged(seconds).unwrap();
}
if unit >= Unit::Millisecond && nanos > C(0) {
let mut millis = nanos / t::NANOS_PER_MILLI;
nanos %= t::NANOS_PER_MILLI;
if millis > t::SpanMilliseconds::MAX_SELF {
nanos +=
(millis - t::SpanMilliseconds::MAX_SELF) * t::NANOS_PER_MILLI;
millis = t::NoUnits128::rfrom(t::SpanMilliseconds::MAX_SELF);
}
// OK because we just checked that our units are in range.
span = span.try_milliseconds_ranged(millis).unwrap();
}
if unit >= Unit::Microsecond && nanos > C(0) {
let mut micros = nanos / t::NANOS_PER_MICRO;
nanos %= t::NANOS_PER_MICRO;
if micros > t::SpanMicroseconds::MAX_SELF {
nanos +=
(micros - t::SpanMicroseconds::MAX_SELF) * t::NANOS_PER_MICRO;
micros = t::NoUnits128::rfrom(t::SpanMicroseconds::MAX_SELF);
}
// OK because we just checked that our units are in range.
span = span.try_microseconds_ranged(micros).unwrap();
}
if nanos > C(0) {
span = span.try_nanoseconds_ranged(nanos).with_context(|| {
err!(
"failed to set nanosecond value {nanos} on span \
determined from {value}.{fraction}",
)
})?;
}
Ok(span)
}
/// Like `fractional_time_to_span`, but just converts the fraction of the given
/// unit to a signed duration.
///
/// Since a signed duration doesn't keep track of individual units, there is
/// no loss of fidelity between it and ISO 8601 durations like there is for
/// `Span`.
///
/// Note that `fraction` can be a fractional hour, minute, second, millisecond
/// or microsecond (even though its type suggests its only a fraction of a
/// second). When milliseconds or microseconds, the given fraction has any
/// sub-nanosecond precision truncated.
///
/// # Errors
///
/// This returns an error if `unit` is not `Hour`, `Minute`, `Second`,
/// `Millisecond` or `Microsecond`.
#[inline(never)]
pub(crate) fn fractional_time_to_duration(
unit: Unit,
fraction: t::SubsecNanosecond,
) -> Result<SignedDuration, Error> {
let fraction = t::NoUnits::rfrom(fraction);
let nanos = match unit {
Unit::Hour => fraction * t::SECONDS_PER_HOUR,
Unit::Minute => fraction * t::SECONDS_PER_MINUTE,
Unit::Second => fraction,
Unit::Millisecond => fraction / t::NANOS_PER_MICRO,
Unit::Microsecond => fraction / t::NANOS_PER_MILLI,
unit => {
return Err(err!(
"fractional {unit} units are not allowed",
unit = unit.singular(),
))
}
};
Ok(SignedDuration::from_nanos(nanos.get()))
}
#[cfg(test)]
mod tests {
use alloc::string::ToString;
use super::*;
#[test]
fn decimal() {
let x = DecimalFormatter::new().format(i64::MIN);
assert_eq!(x.as_str(), "-9223372036854775808");
let x = DecimalFormatter::new().format(i64::MIN + 1);
assert_eq!(x.as_str(), "-9223372036854775807");
let x = DecimalFormatter::new().format(i64::MAX);
assert_eq!(x.as_str(), "9223372036854775807");
let x = DecimalFormatter::new().force_sign(true).format(i64::MAX);
assert_eq!(x.as_str(), "+9223372036854775807");
let x = DecimalFormatter::new().format(0);
assert_eq!(x.as_str(), "0");
let x = DecimalFormatter::new().force_sign(true).format(0);
assert_eq!(x.as_str(), "+0");
let x = DecimalFormatter::new().force_sign(false).format(0);
assert_eq!(x.as_str(), "-0");
let x = DecimalFormatter::new().padding(4).format(0);
assert_eq!(x.as_str(), "0000");
let x = DecimalFormatter::new().padding(4).format(789);
assert_eq!(x.as_str(), "0789");
let x = DecimalFormatter::new().padding(4).format(-789);
assert_eq!(x.as_str(), "-0789");
let x =
DecimalFormatter::new().force_sign(true).padding(4).format(789);
assert_eq!(x.as_str(), "+0789");
}
#[test]
fn fractional_auto() {
let f = |n| FractionalFormatter::new().format(n).as_str().to_string();
assert_eq!(f(0), "");
assert_eq!(f(123_000_000), "123");
assert_eq!(f(123_456_000), "123456");
assert_eq!(f(123_456_789), "123456789");
assert_eq!(f(456_789), "000456789");
assert_eq!(f(789), "000000789");
}
#[test]
fn fractional_precision() {
let f = |precision, n| {
FractionalFormatter::new()
.precision(Some(precision))
.format(n)
.as_str()
.to_string()
};
assert_eq!(f(0, 0), "");
assert_eq!(f(1, 0), "0");
assert_eq!(f(9, 0), "000000000");
assert_eq!(f(3, 123_000_000), "123");
assert_eq!(f(6, 123_000_000), "123000");
assert_eq!(f(9, 123_000_000), "123000000");
assert_eq!(f(3, 123_456_000), "123");
assert_eq!(f(6, 123_456_000), "123456");
assert_eq!(f(9, 123_456_000), "123456000");
assert_eq!(f(3, 123_456_789), "123");
assert_eq!(f(6, 123_456_789), "123456");
assert_eq!(f(9, 123_456_789), "123456789");
// We use truncation, no rounding.
assert_eq!(f(2, 889_000_000), "88");
assert_eq!(f(2, 999_000_000), "99");
}
}