jagua_rs/util/
polygon_simplification.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
use std::cmp::Ordering;

use itertools::Itertools;
use log::{debug, info};
use ordered_float::NotNan;
use serde::{Deserialize, Serialize};

use crate::fsize;
use crate::geometry::geo_traits::{CollidesWith, Shape};
use crate::geometry::primitives::edge::Edge;
use crate::geometry::primitives::point::Point;
use crate::geometry::primitives::simple_polygon::SimplePolygon;

#[derive(Serialize, Deserialize, Clone, Copy, Debug)]
#[serde(tag = "mode", content = "params")]
pub enum PolySimplConfig {
    #[serde(rename = "disabled")]
    Disabled,
    #[serde(rename = "enabled")]
    Enabled {
        /// max deviation from the original polygon area as a fraction of the original area
        tolerance: fsize,
    },
}

#[derive(Serialize, Deserialize, Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub enum PolySimplMode {
    /// Simplify the polygon to be strictly larger than the original
    Inflate,
    /// Simplify the polygon to be strictly smaller than the original
    Deflate,
}

impl PolySimplMode {
    pub fn flip(&self) -> Self {
        match self {
            Self::Inflate => Self::Deflate,
            Self::Deflate => Self::Inflate,
        }
    }
}

#[derive(Clone, Debug, PartialEq)]
enum Candidate {
    Concave(Corner),
    ConvexConvex(Corner, Corner),
    Collinear(Corner),
}

#[derive(Clone, Copy, Debug, PartialEq)]
///Corner is defined as the left hand side of points 0-1-2
struct Corner(pub usize, pub usize, pub usize);

impl Corner {
    pub fn flip(&mut self) {
        std::mem::swap(&mut self.0, &mut self.2);
    }

    pub fn to_points(self, points: &[Point]) -> [Point; 3] {
        [points[self.0], points[self.1], points[self.2]]
    }
}

#[derive(Clone, Copy, Debug, PartialEq)]
enum CornerType {
    Concave,
    Convex,
    Collinear,
}

impl CornerType {
    pub fn from([p1, p2, p3]: [Point; 3]) -> Self {
        //returns the corner type on the left-hand side p1->p2->p3
        //From: https://algorithmtutor.com/Computational-Geometry/Determining-if-two-consecutive-segments-turn-left-or-right/

        let p1p2 = (p2.0 - p1.0, p2.1 - p1.1);
        let p1p3 = (p3.0 - p1.0, p3.1 - p1.1);
        let cross_prod = p1p2.0 * p1p3.1 - p1p2.1 * p1p3.0;

        //a positive cross product indicates that p2p3 turns to the left with respect to p1p2
        match cross_prod.partial_cmp(&0.0).expect("cross product is NaN") {
            Ordering::Less => CornerType::Concave,
            Ordering::Equal => CornerType::Collinear,
            Ordering::Greater => CornerType::Convex,
        }
    }
}

/// Simplifies a shape (removing vertices) strictly inflating or deflating based on the mode.
/// The number of edges is reduced by one at a time, until either the change in area would exceed the max_area_delta or the number of edges would become less than 4.
pub fn simplify_shape(
    shape: &SimplePolygon,
    mode: PolySimplMode,
    max_area_delta: fsize,
) -> SimplePolygon {
    let original_area = shape.area();

    let mut ref_points = shape.points.clone();

    for _ in 0..shape.number_of_points() {
        let n_points = ref_points.len() as isize;
        if n_points < 4 {
            //can't simplify further
            break;
        }

        let mut corners = (0..n_points)
            .map(|i| {
                let i_prev = (i - 1).rem_euclid(n_points);
                let i_next = (i + 1).rem_euclid(n_points);
                Corner(i_prev as usize, i as usize, i_next as usize)
            })
            .collect_vec();

        if mode == PolySimplMode::Deflate {
            //default mode is to inflate, so we need to reverse the order of the corners and flip the corners for deflate mode
            //reverse the order of the corners
            corners.reverse();
            //reverse each corner
            corners.iter_mut().for_each(|c| c.flip());
        }

        let mut candidates = vec![];

        let mut prev_corner = corners.last().expect("corners is empty");
        let mut prev_corner_type = CornerType::from(prev_corner.to_points(&ref_points));

        //Go over all corners and generate candidates
        for corner in corners.iter() {
            let corner_type = CornerType::from(corner.to_points(&ref_points));

            //Generate a removal candidate (or not)
            match (&corner_type, &prev_corner_type) {
                (CornerType::Concave, _) => candidates.push(Candidate::Concave(*corner)),
                (CornerType::Collinear, _) => candidates.push(Candidate::Collinear(*corner)),
                (CornerType::Convex, CornerType::Convex) => {
                    candidates.push(Candidate::ConvexConvex(*prev_corner, *corner))
                }
                (_, _) => {}
            };
            (prev_corner, prev_corner_type) = (corner, corner_type);
        }

        //search the candidate with the smallest change in area that is valid
        let best_candidate = candidates
            .iter()
            .sorted_by_cached_key(|c| {
                calculate_area_delta(&ref_points, c)
                    .unwrap_or_else(|_| NotNan::new(fsize::INFINITY).expect("area delta is NaN"))
            })
            .find(|c| candidate_is_valid(&ref_points, c));

        //if it is within the area change constraints, execute the candidate
        if let Some(best_candidate) = best_candidate {
            let new_shape = execute_candidate(&ref_points, best_candidate);
            let new_shape_area = SimplePolygon::calculate_area(&new_shape);
            let area_delta = (new_shape_area - original_area).abs() / original_area;
            if area_delta <= max_area_delta {
                debug!(
                    "Simplified {:?} causing {:.2}% area change",
                    best_candidate,
                    area_delta * 100.0
                );
                ref_points = new_shape;
            } else {
                break; //area change too significant
            }
        } else {
            break; //no candidate found
        }
    }

    //Convert it back to a simple polygon
    let simpl_shape = SimplePolygon::new(ref_points);

    if simpl_shape.number_of_points() < shape.number_of_points() {
        info!(
            "[PS] simplified from {} to {} edges with {:.3}% area difference",
            shape.number_of_points(),
            simpl_shape.number_of_points(),
            (simpl_shape.area() - shape.area()) / shape.area() * 100.0
        );
    } else {
        info!("[PS] no simplification possible within area change constraints");
    }

    simpl_shape
}

fn calculate_area_delta(
    shape: &[Point],
    candidate: &Candidate,
) -> Result<NotNan<fsize>, InvalidCandidate> {
    //calculate the difference in area of the shape if the candidate were to be executed
    let area = match candidate {
        Candidate::Collinear(_) => 0.0,
        Candidate::Concave(c) => {
            //Triangle formed by i_prev, i and i_next will correspond to the change area
            let Point(x0, y0) = shape[c.0];
            let Point(x1, y1) = shape[c.1];
            let Point(x2, y2) = shape[c.2];

            let area = (x0 * y1 + x1 * y2 + x2 * y0 - x0 * y2 - x1 * y0 - x2 * y1) / 2.0;

            area.abs()
        }
        Candidate::ConvexConvex(c1, c2) => {
            let replacing_vertex = replacing_vertex_convex_convex_candidate(shape, (*c1, *c2))?;

            //the triangle formed by corner c1, c2, and replacing vertex will correspond to the change in area
            let Point(x0, y0) = shape[c1.1];
            let Point(x1, y1) = replacing_vertex;
            let Point(x2, y2) = shape[c2.1];

            let area = (x0 * y1 + x1 * y2 + x2 * y0 - x0 * y2 - x1 * y0 - x2 * y1) / 2.0;

            area.abs()
        }
    };
    Ok(NotNan::new(area).expect("area is NaN"))
}

fn candidate_is_valid(shape: &[Point], candidate: &Candidate) -> bool {
    //ensure the removal/replacement does not create any self intersections
    match candidate {
        Candidate::Collinear(_) => true,
        Candidate::Concave(c) => {
            let new_edge = Edge::new(shape[c.0], shape[c.2]);
            let affected_points = [shape[c.0], shape[c.1], shape[c.2]];

            //check for self-intersections
            edge_iter(shape)
                .filter(|l| !affected_points.contains(&l.start))
                .filter(|l| !affected_points.contains(&l.end))
                .all(|l| !l.collides_with(&new_edge))
        }
        Candidate::ConvexConvex(c1, c2) => {
            match replacing_vertex_convex_convex_candidate(shape, (*c1, *c2)) {
                Err(_) => false,
                Ok(new_vertex) => {
                    let new_edge_1 = Edge::new(shape[c1.0], new_vertex);
                    let new_edge_2 = Edge::new(new_vertex, shape[c2.2]);

                    let affected_points = [shape[c1.1], shape[c1.0], shape[c2.1], shape[c2.2]];

                    //check for self-intersections
                    edge_iter(shape)
                        .filter(|l| !affected_points.contains(&l.start))
                        .filter(|l| !affected_points.contains(&l.end))
                        .all(|l| !l.collides_with(&new_edge_1) && !l.collides_with(&new_edge_2))
                }
            }
        }
    }
}

fn edge_iter(points: &[Point]) -> impl Iterator<Item = Edge> + '_ {
    let n_points = points.len();
    (0..n_points).map(move |i| {
        let j = (i + 1) % n_points;
        Edge::new(points[i], points[j])
    })
}

fn execute_candidate(shape: &[Point], candidate: &Candidate) -> Vec<Point> {
    let mut points = shape.iter().cloned().collect_vec();
    match candidate {
        Candidate::Collinear(c) | Candidate::Concave(c) => {
            points.remove(c.1);
        }
        Candidate::ConvexConvex(c1, c2) => {
            let replacing_vertex = replacing_vertex_convex_convex_candidate(shape, (*c1, *c2))
                .expect("invalid candidate cannot be executed");
            points.remove(c1.1);
            let other_index = if c1.1 < c2.1 { c2.1 - 1 } else { c2.1 };
            points.remove(other_index);
            points.insert(other_index, replacing_vertex);
        }
    }
    points
}

fn replacing_vertex_convex_convex_candidate(
    shape: &[Point],
    (c1, c2): (Corner, Corner),
) -> Result<Point, InvalidCandidate> {
    assert_eq!(c1.2, c2.1, "non-consecutive corners {:?},{:?}", c1, c2);
    assert_eq!(c1.1, c2.0, "non-consecutive corners {:?},{:?}", c1, c2);

    let edge_prev = Edge::new(shape[c1.0], shape[c1.1]);
    let edge_next = Edge::new(shape[c2.2], shape[c2.1]);

    calculate_intersection_in_front(&edge_prev, &edge_next).ok_or(InvalidCandidate)
}

fn calculate_intersection_in_front(l1: &Edge, l2: &Edge) -> Option<Point> {
    //Calculates the intersection point between l1 and l2 if both were extended in front to infinity.

    //https://en.wikipedia.org/wiki/Line%E2%80%93line_intersection#Given_two_points_on_each_line_segment
    //vector 1 = [(x1,y1),(x2,y2)[ and vector 2 = [(x3,y3),(x4,y4)[
    let Point(x1, y1) = l1.start;
    let Point(x2, y2) = l1.end;
    let Point(x3, y3) = l2.start;
    let Point(x4, y4) = l2.end;

    //used formula is slightly different to the one on wikipedia. The orientation of the line segments are flipped
    //We consider an intersection if t == ]0,1] && u == ]0,1]

    let t_nom = (x2 - x4) * (y4 - y3) - (y2 - y4) * (x4 - x3);
    let t_denom = (x2 - x1) * (y4 - y3) - (y2 - y1) * (x4 - x3);

    let u_nom = (x2 - x4) * (y2 - y1) - (y2 - y4) * (x2 - x1);
    let u_denom = (x2 - x1) * (y4 - y3) - (y2 - y1) * (x4 - x3);

    let t = if t_denom != 0.0 { t_nom / t_denom } else { 0.0 };

    let u = if u_denom != 0.0 { u_nom / u_denom } else { 0.0 };

    if t < 0.0 && u < 0.0 {
        //intersection is in front both vectors
        Some(Point(x2 + t * (x1 - x2), y2 + t * (y1 - y2)))
    } else {
        //no intersection (parallel or not in front)
        None
    }
}

#[derive(Debug, Clone)]
struct InvalidCandidate;