jagua_rs/geometry/primitives/
simple_polygon.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
use std::borrow::Borrow;

use itertools::Itertools;
use ordered_float::{NotNan, OrderedFloat};

use crate::fsize;
use crate::geometry::convex_hull::convex_hull_from_points;
use crate::geometry::fail_fast::poi;
use crate::geometry::fail_fast::sp_surrogate::SPSurrogate;
use crate::geometry::geo_enums::GeoPosition;
use crate::geometry::geo_traits::{
    CollidesWith, Distance, SeparationDistance, Shape, Transformable, TransformableFrom,
};
use crate::geometry::primitives::aa_rectangle::AARectangle;
use crate::geometry::primitives::circle::Circle;
use crate::geometry::primitives::edge::Edge;
use crate::geometry::primitives::point::Point;
use crate::geometry::transformation::Transformation;
use crate::util::config::SPSurrogateConfig;
use crate::util::fpa::FPA;

/// Geometric primitive representing a simple polygon: <https://en.wikipedia.org/wiki/Simple_polygon>
#[derive(Clone, Debug)]
pub struct SimplePolygon {
    /// Set of bounds describing the polygon
    pub points: Vec<Point>,
    /// Bounding box
    pub bbox: AARectangle,
    pub area: fsize,
    /// Maximum distance between any two points in the polygon
    pub diameter: fsize,
    /// Pole of inaccessibility
    pub poi: Circle,
    /// Surrogate representation (subset of the simple polygon)
    pub surrogate: Option<SPSurrogate>,
}

impl SimplePolygon {
    /// Create a new simple polygon from a set of points, expensive operations are performed here! Use [Self::clone()] or [Self::transform()] to avoid recomputation.
    pub fn new(mut points: Vec<Point>) -> Self {
        assert!(
            points.len() >= 3,
            "simple polygon must have at least 3 points"
        );
        assert_eq!(
            points.iter().unique().count(),
            points.len(),
            "simple polygon should not contain duplicate points: {:?}",
            points
        );

        let area = match SimplePolygon::calculate_area(&points) {
            area if area == 0.0 => panic!("simple polygon has no area: {:?}", points),
            area if area < 0.0 => {
                //edges should always be ordered counterclockwise (positive area)
                points.reverse();
                -area
            }
            area => area,
        };

        let diameter = SimplePolygon::calculate_diameter(points.clone());
        let bbox = SimplePolygon::generate_bounding_box(&points);
        let poi = SimplePolygon::calculate_poi(&points, diameter);

        SimplePolygon {
            points,
            bbox,
            area,
            diameter,
            poi,
            surrogate: None,
        }
    }

    pub fn generate_surrogate(&mut self, config: SPSurrogateConfig) {
        match &self.surrogate {
            Some(surrogate) if surrogate.config == config => {}
            _ => self.surrogate = Some(SPSurrogate::new(self, config)),
        }
    }

    pub fn get_point(&self, i: usize) -> Point {
        self.points[i]
    }

    pub fn get_edge(&self, i: usize) -> Edge {
        let j = (i + 1) % self.number_of_points();
        Edge::new(self.points[i], self.points[j])
    }

    pub fn edge_iter(&self) -> impl Iterator<Item = Edge> + '_ {
        (0..self.number_of_points()).map(move |i| self.get_edge(i))
    }

    pub fn number_of_points(&self) -> usize {
        self.points.len()
    }

    pub fn surrogate(&self) -> &SPSurrogate {
        self.surrogate.as_ref().expect("surrogate not generated")
    }

    pub fn calculate_diameter(points: Vec<Point>) -> fsize {
        //The two points furthest apart must be part of the convex hull
        let ch = convex_hull_from_points(points);

        //go through all pairs of points and find the pair with the largest distance
        let sq_diam = ch
            .iter()
            .tuple_combinations()
            .map(|(p1, p2)| p1.sq_distance(p2))
            .max_by_key(|sq_d| NotNan::new(*sq_d).unwrap())
            .expect("convex hull is empty");

        sq_diam.sqrt()
    }

    pub fn generate_bounding_box(points: &[Point]) -> AARectangle {
        let (mut x_min, mut y_min) = (fsize::MAX, fsize::MAX);
        let (mut x_max, mut y_max) = (fsize::MIN, fsize::MIN);

        for point in points.iter() {
            x_min = x_min.min(point.0);
            y_min = y_min.min(point.1);
            x_max = x_max.max(point.0);
            y_max = y_max.max(point.1);
        }
        AARectangle::new(x_min, y_min, x_max, y_max)
    }

    //https://en.wikipedia.org/wiki/Shoelace_formula
    //counterclockwise = positive area, clockwise = negative area
    pub fn calculate_area(points: &[Point]) -> fsize {
        let mut sigma: fsize = 0.0;
        for i in 0..points.len() {
            //next point
            let j = (i + 1) % points.len();

            let (x_i, y_i) = points[i].into();
            let (x_j, y_j) = points[j].into();

            sigma += (y_i + y_j) * (x_i - x_j)
        }

        0.5 * sigma
    }

    pub fn calculate_poi(points: &[Point], diameter: fsize) -> Circle {
        //need to make a dummy simple polygon, because the pole generation algorithm
        //relies on many of the methods provided by the simple polygon struct
        let dummy_sp = {
            let bbox = SimplePolygon::generate_bounding_box(points);
            let area = SimplePolygon::calculate_area(points);
            let dummy_poi = Circle::new(Point(fsize::MAX, fsize::MAX), fsize::MAX);

            SimplePolygon {
                points: points.to_vec(),
                bbox,
                area,
                diameter,
                poi: dummy_poi,
                surrogate: None,
            }
        };

        poi::generate_next_pole(&dummy_sp, &[])
    }

    pub fn center_around_centroid(mut self) -> (SimplePolygon, Transformation) {
        let Point(c_x, c_y) = self.centroid();
        let transformation = Transformation::from_translation((-c_x, -c_y));

        self.transform(&transformation);

        (self, transformation)
    }
}

impl Shape for SimplePolygon {
    fn centroid(&self) -> Point {
        //based on: https://en.wikipedia.org/wiki/Centroid#Of_a_polygon

        let area = self.area();
        let mut c_x = 0.0;
        let mut c_y = 0.0;

        for i in 0..self.number_of_points() {
            let j = if i == self.number_of_points() - 1 {
                0
            } else {
                i + 1
            };
            let Point(x_i, y_i) = self.get_point(i);
            let Point(x_j, y_j) = self.get_point(j);
            c_x += (x_i + x_j) * (x_i * y_j - x_j * y_i);
            c_y += (y_i + y_j) * (x_i * y_j - x_j * y_i);
        }

        c_x /= 6.0 * area;
        c_y /= 6.0 * area;

        (c_x, c_y).into()
    }

    fn area(&self) -> fsize {
        self.area
    }

    fn bbox(&self) -> AARectangle {
        self.bbox.clone()
    }

    fn diameter(&self) -> fsize {
        self.diameter
    }
}

impl Transformable for SimplePolygon {
    fn transform(&mut self, t: &Transformation) -> &mut Self {
        //destructuring pattern to ensure that the code is updated when the struct changes
        let SimplePolygon {
            points,
            bbox,
            area: _,
            diameter: _,
            poi,
            surrogate,
        } = self;

        //transform all points of the simple poly
        points.iter_mut().for_each(|p| {
            p.transform(t);
        });

        poi.transform(t);

        //transform the surrogate
        if let Some(surrogate) = surrogate.as_mut() {
            surrogate.transform(t);
        }

        //regenerate bounding box
        *bbox = SimplePolygon::generate_bounding_box(points);

        self
    }
}

impl TransformableFrom for SimplePolygon {
    fn transform_from(&mut self, reference: &Self, t: &Transformation) -> &mut Self {
        //destructuring pattern to ensure that the code is updated when the struct changes
        let SimplePolygon {
            points,
            bbox,
            area: _,
            diameter: _,
            poi,
            surrogate,
        } = self;

        for (p, ref_p) in points.iter_mut().zip(&reference.points) {
            p.transform_from(ref_p, t);
        }

        poi.transform_from(&reference.poi, t);

        //transform the surrogate
        if let Some(surrogate) = surrogate.as_mut() {
            surrogate.transform_from(reference.surrogate(), t);
        }
        //regenerate bounding box
        *bbox = SimplePolygon::generate_bounding_box(points);

        self
    }
}

impl CollidesWith<Point> for SimplePolygon {
    fn collides_with(&self, point: &Point) -> bool {
        //based on the ray casting algorithm: https://en.wikipedia.org/wiki/Point_in_polygon#Ray_casting_algorithm
        match self.bbox().collides_with(point) {
            false => false,
            true => {
                //horizontal ray shot to the right.
                //Starting from the point to another point that is certainly outside the shape
                let point_outside = Point(self.bbox.x_max + self.bbox.width(), point.1);
                let ray = Edge::new(*point, point_outside);

                let mut n_intersections = 0;
                for edge in self.edge_iter() {
                    //Check if the ray does not go through (or almost through) a vertex
                    //This can result in funky behaviour, which could incorrect results
                    //Therefore we handle this case
                    let (s_x, s_y) = (FPA(edge.start.0), FPA(edge.start.1));
                    let (e_x, e_y) = (FPA(edge.end.0), FPA(edge.end.1));
                    let (p_x, p_y) = (FPA(point.0), FPA(point.1));

                    if (s_y == p_y && s_x > p_x) || (e_y == p_y && e_x > p_x) {
                        //in this case, the ray passes through (or dangerously close to) a vertex
                        //We handle this case by only counting an intersection if the edge is below the ray
                        if s_y < p_y || e_y < p_y {
                            n_intersections += 1;
                        }
                    } else if ray.collides_with(&edge) {
                        n_intersections += 1;
                    }
                }
                n_intersections % 2 == 1
            }
        }
    }
}

impl Distance<Point> for SimplePolygon {
    fn sq_distance(&self, point: &Point) -> fsize {
        match self.collides_with(point) {
            true => 0.0,
            false => self
                .edge_iter()
                .map(|edge| edge.sq_distance(point))
                .min_by(|a, b| a.partial_cmp(b).unwrap())
                .unwrap(),
        }
    }
    fn distance(&self, point: &Point) -> fsize {
        self.sq_distance(point).sqrt()
    }
}

impl SeparationDistance<Point> for SimplePolygon {
    fn separation_distance(&self, point: &Point) -> (GeoPosition, fsize) {
        let (position, sq_distance) = self.sq_separation_distance(point);
        (position, sq_distance.sqrt())
    }

    fn sq_separation_distance(&self, point: &Point) -> (GeoPosition, fsize) {
        let distance_to_closest_edge = self
            .edge_iter()
            .map(|edge| edge.sq_distance(point))
            .min_by_key(|sq_d| OrderedFloat(*sq_d))
            .unwrap();

        match self.collides_with(point) {
            true => (GeoPosition::Interior, distance_to_closest_edge),
            false => (GeoPosition::Exterior, distance_to_closest_edge),
        }
    }
}

impl<T> From<T> for SimplePolygon
where
    T: Borrow<AARectangle>,
{
    fn from(r: T) -> Self {
        let r = r.borrow();
        SimplePolygon::new(vec![
            (r.x_min, r.y_min).into(),
            (r.x_max, r.y_min).into(),
            (r.x_max, r.y_max).into(),
            (r.x_min, r.y_max).into(),
        ])
    }
}