jagua_rs/geometry/primitives/
edge.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
use crate::fsize;
use crate::geometry::geo_traits::{
    CollidesWith, Distance, Shape, Transformable, TransformableFrom,
};
use crate::geometry::primitives::aa_rectangle::AARectangle;
use crate::geometry::primitives::point::Point;
use crate::geometry::transformation::Transformation;

/// Geometric primitive representing a line segment
#[derive(Clone, Debug, PartialEq)]
pub struct Edge {
    pub start: Point,
    pub end: Point,
}

impl Edge {
    pub fn new(start: Point, end: Point) -> Self {
        if start == end {
            panic!("degenerate edge, {start:?} == {end:?}");
        }

        Edge { start, end }
    }

    pub fn extend_at_front(mut self, d: fsize) -> Self {
        //extend the line at the front by distance d
        let (dx, dy) = (self.end.0 - self.start.0, self.end.1 - self.start.1);
        let l = self.diameter();
        self.start.0 -= dx * (d / l);
        self.start.1 -= dy * (d / l);
        self
    }

    pub fn extend_at_back(mut self, d: fsize) -> Self {
        //extend the line at the back by distance d
        let (dx, dy) = (self.end.0 - self.start.0, self.end.1 - self.start.1);
        let l = self.diameter();
        self.end.0 += dx * (d / l);
        self.end.1 += dy * (d / l);
        self
    }

    pub fn scale(mut self, factor: fsize) -> Self {
        let (dx, dy) = (self.end.0 - self.start.0, self.end.1 - self.start.1);
        self.start.0 -= dx * (factor - 1.0) / 2.0;
        self.start.1 -= dy * (factor - 1.0) / 2.0;
        self.end.0 += dx * (factor - 1.0) / 2.0;
        self.end.1 += dy * (factor - 1.0) / 2.0;
        self
    }

    pub fn reverse(mut self) -> Self {
        std::mem::swap(&mut self.start, &mut self.end);
        self
    }

    pub fn collides_at(&self, other: &Edge) -> Option<Point> {
        match edge_intersection(self, other, true) {
            Intersection::No => None,
            Intersection::Yes(point) => Some(
                point.expect("Intersection::Yes, but returned no point when this was requested"),
            ),
        }
    }

    /// Returns the closest point which lies on the edge to the given point
    pub fn closest_point_on_edge(&self, point: &Point) -> Point {
        //from https://stackoverflow.com/a/6853926
        let Point(x1, y1) = self.start;
        let Point(x2, y2) = self.end;
        let Point(x, y) = point;

        let a = x - x1;
        let b = y - y1;
        let c = x2 - x1;
        let d = y2 - y1;

        let dot = a * c + b * d;
        let len_sq = c * c + d * d;
        let mut param = -1.0;
        if len_sq != 0.0 {
            param = dot / len_sq;
        }
        let (xx, yy) = match param {
            p if p < 0.0 => (x1, y1),              //start is the closest point
            p if p > 1.0 => (x2, y2),              //end is the closest point
            _ => (x1 + param * c, y1 + param * d), //closest point is on the edge
        };

        Point(xx, yy)
    }

    pub fn x_min(&self) -> fsize {
        fsize::min(self.start.0, self.end.0)
    }

    pub fn y_min(&self) -> fsize {
        fsize::min(self.start.1, self.end.1)
    }

    pub fn x_max(&self) -> fsize {
        fsize::max(self.start.0, self.end.0)
    }

    pub fn y_max(&self) -> fsize {
        fsize::max(self.start.1, self.end.1)
    }
}

impl Transformable for Edge {
    fn transform(&mut self, t: &Transformation) -> &mut Self {
        let Edge { start, end } = self;
        start.transform(t);
        end.transform(t);

        self
    }
}

impl TransformableFrom for Edge {
    fn transform_from(&mut self, reference: &Self, t: &Transformation) -> &mut Self {
        let Edge { start, end } = self;
        start.transform_from(&reference.start, t);
        end.transform_from(&reference.end, t);

        self
    }
}

impl Shape for Edge {
    fn centroid(&self) -> Point {
        Point(
            (self.start.0 + self.end.0) / 2.0,
            (self.start.1 + self.end.1) / 2.0,
        )
    }

    fn area(&self) -> fsize {
        0.0
    }

    fn bbox(&self) -> AARectangle {
        AARectangle::new(self.x_min(), self.y_min(), self.x_max(), self.y_max())
    }

    fn diameter(&self) -> fsize {
        self.start.distance(&self.end)
    }
}

impl Distance<Point> for Edge {
    #[inline(always)]
    fn sq_distance(&self, point: &Point) -> fsize {
        let Point(x, y) = point;
        let Point(xx, yy) = self.closest_point_on_edge(point);

        let (dx, dy) = (x - xx, y - yy);
        dx.powi(2) + dy.powi(2)
    }

    #[inline(always)]
    fn distance(&self, point: &Point) -> fsize {
        fsize::sqrt(self.sq_distance(point))
    }
}

impl CollidesWith<Edge> for Edge {
    #[inline(always)]
    fn collides_with(&self, other: &Edge) -> bool {
        match edge_intersection(self, other, false) {
            Intersection::No => false,
            Intersection::Yes(_) => true,
        }
    }
}

impl CollidesWith<AARectangle> for Edge {
    #[inline(always)]
    fn collides_with(&self, other: &AARectangle) -> bool {
        other.collides_with(self)
    }
}

#[inline(always)]
fn edge_intersection(e1: &Edge, e2: &Edge, calculate_location: bool) -> Intersection {
    if fsize::max(e1.x_min(), e2.x_min()) > fsize::min(e1.x_max(), e2.x_max())
        || fsize::max(e1.y_min(), e2.y_min()) > fsize::min(e1.y_max(), e2.y_max())
    {
        //bounding boxes do not overlap
        return Intersection::No;
    }

    //based on: https://en.wikipedia.org/wiki/Line%E2%80%93line_intersection#Given_two_points_on_each_line_segment
    let Point(x1, y1) = e1.start;
    let Point(x2, y2) = e1.end;
    let Point(x3, y3) = e2.start;
    let Point(x4, y4) = e2.end;

    let t_nom = (x2 - x4) * (y4 - y3) - (y2 - y4) * (x4 - x3);
    let t_denom = (x2 - x1) * (y4 - y3) - (y2 - y1) * (x4 - x3);
    let u_nom = (x2 - x4) * (y2 - y1) - (y2 - y4) * (x2 - x1);
    let u_denom = (x2 - x1) * (y4 - y3) - (y2 - y1) * (x4 - x3);

    if t_denom == 0.0 || u_denom == 0.0 {
        //parallel edges
        Intersection::No
    } else {
        let t = t_nom / t_denom;
        let u = u_nom / u_denom;
        if (0.0..=1.0).contains(&t) && (0.0..=1.0).contains(&u) {
            if calculate_location {
                let x = x2 + t * (x1 - x2);
                let y = y2 + t * (y1 - y2);
                Intersection::Yes(Some(Point(x, y)))
            } else {
                Intersection::Yes(None)
            }
        } else {
            Intersection::No
        }
    }
}

enum Intersection {
    Yes(Option<Point>),
    No,
}