jagua_rs/geometry/primitives/
aa_rectangle.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
use crate::fsize;
use crate::geometry::geo_enums::{GeoPosition, GeoRelation};
use crate::geometry::geo_traits::{
    AlmostCollidesWith, CollidesWith, Distance, SeparationDistance, Shape,
};
use crate::geometry::primitives::edge::Edge;
use crate::geometry::primitives::point::Point;
use crate::util::fpa::FPA;
use ordered_float::OrderedFloat;
use std::cmp::Ordering;

///Geometric primitive representing an axis-aligned rectangle
#[derive(Clone, Debug, PartialEq)]
pub struct AARectangle {
    pub x_min: fsize,
    pub y_min: fsize,
    pub x_max: fsize,
    pub y_max: fsize,
}

impl AARectangle {
    pub fn new(x_min: fsize, y_min: fsize, x_max: fsize, y_max: fsize) -> Self {
        debug_assert!(
            x_min < x_max && y_min < y_max,
            "invalid AARectangle, x_min: {}, x_max: {}, y_min: {}, y_max: {}",
            x_min,
            x_max,
            y_min,
            y_max
        );
        AARectangle {
            x_min,
            y_min,
            x_max,
            y_max,
        }
    }

    /// Returns the relation between self and another AARectangle
    pub fn relation_to(&self, other: &AARectangle) -> GeoRelation {
        if self.collides_with(other) {
            if self.x_min <= other.x_min
                && self.y_min <= other.y_min
                && self.x_max >= other.x_max
                && self.y_max >= other.y_max
            {
                GeoRelation::Surrounding
            } else if self.x_min >= other.x_min
                && self.y_min >= other.y_min
                && self.x_max <= other.x_max
                && self.y_max <= other.y_max
            {
                GeoRelation::Enclosed
            } else {
                GeoRelation::Intersecting
            }
        } else {
            GeoRelation::Disjoint
        }
    }

    /// Returns the relation between self and another AARectangle, with a tolerance for floating point precision.
    /// Leaning towards `Surrounding` and `Enclosed` instead of `Intersecting` in edge cases.
    pub fn almost_relation_to(&self, other: &AARectangle) -> GeoRelation {
        if self.almost_collides_with(other) {
            if FPA::from(self.x_min) <= FPA::from(other.x_min)
                && FPA::from(self.y_min) <= FPA::from(other.y_min)
                && FPA::from(self.x_max) >= FPA::from(other.x_max)
                && FPA::from(self.y_max) >= FPA::from(other.y_max)
            {
                GeoRelation::Surrounding
            } else if FPA::from(self.x_min) >= FPA::from(other.x_min)
                && FPA::from(self.y_min) >= FPA::from(other.y_min)
                && FPA::from(self.x_max) <= FPA::from(other.x_max)
                && FPA::from(self.y_max) <= FPA::from(other.y_max)
            {
                GeoRelation::Enclosed
            } else {
                GeoRelation::Intersecting
            }
        } else {
            GeoRelation::Disjoint
        }
    }

    /// Returns the rectangle that is the result of inflating the smallest dimension of the rectangle to match the largest dimension
    pub fn inflate_to_square(&self) -> AARectangle {
        let width = self.x_max - self.x_min;
        let height = self.y_max - self.y_min;
        let mut dx = 0.0;
        let mut dy = 0.0;
        if height < width {
            dy = (width - height) / 2.0;
        } else if width < height {
            dx = (height - width) / 2.0;
        }
        AARectangle::new(
            self.x_min - dx,
            self.y_min - dy,
            self.x_max + dx,
            self.y_max + dy,
        )
    }

    pub fn scale(self, factor: fsize) -> Self {
        let dx = (self.x_max - self.x_min) * (factor - 1.0) / 2.0;
        let dy = (self.y_max - self.y_min) * (factor - 1.0) / 2.0;
        self.resize_by(dx, dy)
            .expect("scaling should not lead to invalid rectangle")
    }

    /// Returns a new rectangle with the same center but expanded by `dx` in both x-directions and by `dy` in both y-directions.
    /// If the new rectangle is invalid (x_min >= x_max or y_min >= y_max), returns None.
    pub fn resize_by(mut self, dx: fsize, dy: fsize) -> Option<Self> {
        self.x_min -= dx;
        self.y_min -= dy;
        self.x_max += dx;
        self.y_max += dy;

        if self.x_min < self.x_max && self.y_min < self.y_max {
            Some(self)
        } else {
            //resizing would lead to invalid rectangle
            None
        }
    }

    /// For all quadrants, contains indices of the two neighbors of the quadrant at that index.
    pub const QUADRANT_NEIGHBOR_LAYOUT: [[usize; 2]; 4] = [[1, 3], [0, 2], [1, 3], [0, 2]];

    /// Returns the 4 quadrants of the rectangle.
    /// Ordered in the same way as quadrants in a cartesian plane:
    /// <https://en.wikipedia.org/wiki/Quadrant_(plane_geometry)>
    pub fn quadrants(&self) -> [Self; 4] {
        let mid = self.centroid();
        let corners = self.corners();

        let q1 = Edge::new(corners[0], mid).bbox();
        let q2 = Edge::new(corners[1], mid).bbox();
        let q3 = Edge::new(corners[2], mid).bbox();
        let q4 = Edge::new(corners[3], mid).bbox();

        [q1, q2, q3, q4]
    }

    /// Returns the four corners, in the same order as [AARectangle::quadrants].
    pub fn corners(&self) -> [Point; 4] {
        [
            Point(self.x_max, self.y_max),
            Point(self.x_min, self.y_max),
            Point(self.x_min, self.y_min),
            Point(self.x_max, self.y_min),
        ]
    }

    /// Returns the four edges of the rectangle, in the same order as [AARectangle::quadrants].
    pub fn edges(&self) -> [Edge; 4] {
        let c = self.corners();
        [
            Edge::new(c[0], c[1]),
            Edge::new(c[1], c[2]),
            Edge::new(c[2], c[3]),
            Edge::new(c[3], c[0]),
        ]
    }

    pub fn width(&self) -> fsize {
        self.x_max - self.x_min
    }

    pub fn height(&self) -> fsize {
        self.y_max - self.y_min
    }

    pub fn from_intersection(a: &AARectangle, b: &AARectangle) -> Option<AARectangle> {
        let x_min = fsize::max(a.x_min, b.x_min);
        let y_min = fsize::max(a.y_min, b.y_min);
        let x_max = fsize::min(a.x_max, b.x_max);
        let y_max = fsize::min(a.y_max, b.y_max);
        if x_min < x_max && y_min < y_max {
            Some(AARectangle::new(x_min, y_min, x_max, y_max))
        } else {
            None
        }
    }

    pub fn bounding_rectangle(a: &AARectangle, b: &AARectangle) -> AARectangle {
        let x_min = fsize::min(a.x_min, b.x_min);
        let y_min = fsize::min(a.y_min, b.y_min);
        let x_max = fsize::max(a.x_max, b.x_max);
        let y_max = fsize::max(a.y_max, b.y_max);
        AARectangle::new(x_min, y_min, x_max, y_max)
    }
}

impl Shape for AARectangle {
    fn centroid(&self) -> Point {
        Point(
            (self.x_min + self.x_max) / 2.0,
            (self.y_min + self.y_max) / 2.0,
        )
    }

    fn area(&self) -> fsize {
        (self.x_max - self.x_min) * (self.y_max - self.y_min)
    }

    fn bbox(&self) -> AARectangle {
        self.clone()
    }

    fn diameter(&self) -> fsize {
        let dx = self.x_max - self.x_min;
        let dy = self.y_max - self.y_min;
        (dx.powi(2) + dy.powi(2)).sqrt()
    }
}

impl CollidesWith<AARectangle> for AARectangle {
    #[inline(always)]
    fn collides_with(&self, other: &AARectangle) -> bool {
        fsize::max(self.x_min, other.x_min) <= fsize::min(self.x_max, other.x_max)
            && fsize::max(self.y_min, other.y_min) <= fsize::min(self.y_max, other.y_max)
    }
}

impl AlmostCollidesWith<AARectangle> for AARectangle {
    #[inline(always)]
    fn almost_collides_with(&self, other: &AARectangle) -> bool {
        FPA(fsize::max(self.x_min, other.x_min)) <= FPA(fsize::min(self.x_max, other.x_max))
            && FPA(fsize::max(self.y_min, other.y_min)) <= FPA(fsize::min(self.y_max, other.y_max))
    }
}

impl CollidesWith<Point> for AARectangle {
    #[inline(always)]
    fn collides_with(&self, point: &Point) -> bool {
        let Point(x, y) = *point;
        x >= self.x_min && x <= self.x_max && y >= self.y_min && y <= self.y_max
    }
}

impl AlmostCollidesWith<Point> for AARectangle {
    #[inline(always)]
    fn almost_collides_with(&self, point: &Point) -> bool {
        let (x, y) = (*point).into();
        FPA(x) >= FPA(self.x_min)
            && FPA(x) <= FPA(self.x_max)
            && FPA(y) >= FPA(self.y_min)
            && FPA(y) <= FPA(self.y_max)
    }
}

impl CollidesWith<Edge> for AARectangle {
    #[inline(always)]
    fn collides_with(&self, edge: &Edge) -> bool {
        //inspired by: https://stackoverflow.com/questions/99353/how-to-test-if-a-line-segment-intersects-an-axis-aligned-rectange-in-2d

        let x_min = edge.x_min();
        let x_max = edge.x_max();
        let y_min = edge.y_min();
        let y_max = edge.y_max();

        //If both end points of the line are entirely outside the range of the rectangle
        if x_max < self.x_min || x_min > self.x_max || y_max < self.y_min || y_min > self.y_max {
            return false;
        }

        //If either end point of the line is inside the rectangle
        if self.collides_with(&edge.start) || self.collides_with(&edge.end) {
            return true;
        }

        //If all corners of rectangle are on the same side of the edge, no collision is possible
        const POINT_EDGE_RELATION: fn(Point, &Edge) -> Ordering =
            |p: Point, edge: &Edge| -> Ordering {
                let Point(p_x, p_y) = p;
                let Point(s_x, s_y) = edge.start;
                let Point(e_x, e_y) = edge.end;
                // if 0.0, the point is on the line
                // if > 0.0, the point is "above" of the line
                // if < 0.0, the point is "below" the line
                let v = (p_x - s_x) * (e_y - s_y) - (p_y - s_y) * (e_x - s_x);
                v.partial_cmp(&0.0).unwrap()
            };

        let all_corners_same_side = self
            .corners()
            .map(|corner| POINT_EDGE_RELATION(corner, edge))
            .windows(2)
            .all(|w| w[0] == w[1]);

        if all_corners_same_side {
            return false;
        }

        //The only possible that remains is that the edge collides with one of the edges of the AARectangle
        self.edges()
            .iter()
            .any(|rect_edge| edge.collides_with(rect_edge))
    }
}

impl Distance<Point> for AARectangle {
    #[inline(always)]
    fn sq_distance(&self, point: &Point) -> fsize {
        let Point(x, y) = *point;
        let mut distance: fsize = 0.0;
        if x < self.x_min {
            distance += (x - self.x_min).powi(2);
        } else if x > self.x_max {
            distance += (x - self.x_max).powi(2);
        }
        if y < self.y_min {
            distance += (y - self.y_min).powi(2);
        } else if y > self.y_max {
            distance += (y - self.y_max).powi(2);
        }
        distance.abs()
    }

    #[inline(always)]
    fn distance(&self, point: &Point) -> fsize {
        self.sq_distance(point).sqrt()
    }
}

impl SeparationDistance<Point> for AARectangle {
    #[inline(always)]
    fn separation_distance(&self, point: &Point) -> (GeoPosition, fsize) {
        let (position, sq_distance) = self.sq_separation_distance(point);
        (position, sq_distance.sqrt())
    }

    #[inline(always)]
    fn sq_separation_distance(&self, point: &Point) -> (GeoPosition, fsize) {
        match self.collides_with(point) {
            false => (GeoPosition::Exterior, self.sq_distance(point)),
            true => {
                let Point(x, y) = *point;
                let min_distance = [
                    (x - self.x_min).abs(),
                    (x - self.x_max).abs(),
                    (y - self.y_min).abs(),
                    (y - self.y_max).abs(),
                ]
                .into_iter()
                .min_by_key(|&d| OrderedFloat(d))
                .unwrap();
                (GeoPosition::Interior, min_distance.powi(2))
            }
        }
    }
}