jagua_rs/collision_detection/hpg/
grid.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
use std::cmp::Ordering;
use std::ops::RangeInclusive;

use itertools::Itertools;
use ordered_float::NotNan;

use crate::fsize;
use crate::geometry::primitives::point::Point;

/// Representation of a grid of optional elements of type T
/// Divided into rows and columns, where each row and column has a unique coordinate
#[derive(Clone, Debug)]
pub struct Grid<T> {
    pub cells: Vec<Option<T>>,
    pub rows: Vec<NotNan<fsize>>,
    pub cols: Vec<NotNan<fsize>>,
    pub n_rows: usize,
    pub n_cols: usize,
    pub n_elements: usize,
}

impl<T> Grid<T> {
    /// Creates a new grid from a vector of values of type T and their coordinates
    pub fn new(elements: Vec<(T, Point)>) -> Self {
        let n_elements = elements.len();

        //find all unique rows and columns from the element's coordinates
        let rows = elements
            .iter()
            .map(|(_e, Point(_x, y))| NotNan::new(*y).unwrap())
            .unique()
            .sorted()
            .collect::<Vec<NotNan<fsize>>>();

        let cols = elements
            .iter()
            .map(|(_e, Point(x, _y))| NotNan::new(*x).unwrap())
            .unique()
            .sorted()
            .collect::<Vec<NotNan<fsize>>>();

        let n_rows = rows.len();
        let n_cols = cols.len();

        //create a vector of cells, with the correct size
        let mut cells = (0..n_rows * n_cols).map(|_| None).collect_vec();

        for (element, Point(x, y)) in elements {
            //search correct row and col for the cell
            let row = match rows.binary_search(&NotNan::new(y).unwrap()) {
                Ok(row) => row,
                Err(_) => unreachable!(),
            };
            let col = match cols.binary_search(&NotNan::new(x).unwrap()) {
                Ok(col) => col,
                Err(_) => unreachable!(),
            };
            //convert to index
            let index =
                Self::calculate_index(row, col, n_rows, n_cols).expect("index out of bounds");
            cells[index] = Some(element);
        }

        Self {
            cells,
            rows,
            cols,
            n_rows,
            n_cols,
            n_elements,
        }
    }

    //returns the range of row indices to completely cover the coordinate range
    pub fn rows_in_range(&self, y_range: RangeInclusive<fsize>) -> RangeInclusive<usize> {
        let start_range = NotNan::new(*y_range.start()).expect("start is NaN");
        let end_range = NotNan::new(*y_range.end()).expect("end is NaN");

        let start_row = match self.rows.binary_search(&start_range) {
            Ok(start) => start,
            Err(start_insertion) => start_insertion.saturating_sub(1),
        };
        let end_row = match self.rows.binary_search(&end_range) {
            Ok(end) => end,
            Err(end_insertion) => usize::min(end_insertion, self.n_rows - 1),
        };

        start_row..=end_row
    }

    //returns the range of column indices to completely cover the coordinate range
    pub fn cols_in_range(&self, x_range: RangeInclusive<fsize>) -> RangeInclusive<usize> {
        let start_range = NotNan::new(*x_range.start()).expect("start is NaN");
        let end_range = NotNan::new(*x_range.end()).expect("end is NaN");

        let start_col = match self.cols.binary_search(&start_range) {
            Ok(start) => start,
            Err(start_insertion) => start_insertion.saturating_sub(1),
        };
        let end_col = match self.cols.binary_search(&end_range) {
            Ok(end) => end,
            Err(end_insertion) => usize::min(end_insertion, self.n_cols - 1),
        };

        start_col..=end_col
    }

    ///Returns the indices of the 8 directly neighboring cells.
    ///If the cell is on the edge, the index of the cell itself is returned instead for neighbors out of bounds
    pub fn get_neighbors(&self, idx: usize) -> [usize; 8] {
        let mut neighbors = [0; 8];
        let (row, col) = (idx / self.n_cols, idx % self.n_cols);
        let (n_cols, n_rows) = (self.n_cols, self.n_rows);

        //ugly, but seems to be the fastest way of doing it
        neighbors[0] = if row > 0 && col > 0 {
            idx - n_cols - 1
        } else {
            idx
        };
        neighbors[1] = if row > 0 { idx - n_cols } else { idx };
        neighbors[2] = if row > 0 && col < n_cols - 1 {
            idx - n_cols + 1
        } else {
            idx
        };
        neighbors[3] = if col > 0 { idx - 1 } else { idx };
        neighbors[4] = if col < n_cols - 1 { idx + 1 } else { idx };
        neighbors[5] = if row < n_rows - 1 && col > 0 {
            idx + n_cols - 1
        } else {
            idx
        };
        neighbors[6] = if row < n_rows - 1 { idx + n_cols } else { idx };
        neighbors[7] = if row < n_rows - 1 && col < n_cols - 1 {
            idx + n_cols + 1
        } else {
            idx
        };

        neighbors
    }

    pub fn to_index(&self, row: usize, col: usize) -> Result<usize, OutOfBounds> {
        Self::calculate_index(row, col, self.n_rows, self.n_cols)
    }

    fn calculate_index(
        row: usize,
        col: usize,
        n_rows: usize,
        n_cols: usize,
    ) -> Result<usize, OutOfBounds> {
        match (row.cmp(&n_rows), col.cmp(&n_cols)) {
            (Ordering::Less, Ordering::Less) => Ok(row * n_cols + col),
            _ => Err(OutOfBounds), //out of bounds
        }
    }

    pub fn to_row_col(&self, index: usize) -> Option<(usize, usize)> {
        match index.cmp(&(self.n_rows * self.n_cols)) {
            Ordering::Less => {
                let row = index / self.n_cols;
                let col = index % self.n_cols;
                Some((row, col))
            }
            _ => None, //out of bounds
        }
    }
}

#[derive(Debug, Clone, Copy)]
pub struct OutOfBounds;