jagua_rs/collision_detection/
cd_engine.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
use crate::collision_detection::hazard::Hazard;
use crate::collision_detection::hazard::HazardEntity;
use crate::collision_detection::hazard_helpers::{DetectionMap, HazardDetector};
use crate::collision_detection::hpg::grid::Grid;
use crate::collision_detection::hpg::hazard_proximity_grid::{DirtyState, HazardProximityGrid};
use crate::collision_detection::hpg::hpg_cell::HPGCell;
use crate::collision_detection::quadtree::qt_node::QTNode;
use crate::fsize;
use crate::geometry::fail_fast::sp_surrogate::SPSurrogate;
use crate::geometry::geo_enums::{GeoPosition, GeoRelation};
use crate::geometry::geo_traits::{CollidesWith, Shape, Transformable, TransformableFrom};
use crate::geometry::primitives::aa_rectangle::AARectangle;
use crate::geometry::primitives::circle::Circle;
use crate::geometry::primitives::edge::Edge;
use crate::geometry::primitives::point::Point;
use crate::geometry::primitives::simple_polygon::SimplePolygon;
use crate::geometry::transformation::Transformation;
use crate::util::assertions;
use crate::util::config::CDEConfig;
use itertools::Itertools;
use tribool::Tribool;

/// The Collision Detection Engine (CDE).
/// The CDE can resolve a range of collision queries
/// and update its state by registering and deregistering hazards.
#[derive(Clone, Debug)]
pub struct CDEngine {
    pub quadtree: QTNode,
    pub static_hazards: Vec<Hazard>,
    pub dynamic_hazards: Vec<Hazard>,
    pub haz_prox_grid: Option<HazardProximityGrid>,
    pub config: CDEConfig,
    pub bbox: AARectangle,
    pub uncommitted_deregisters: Vec<Hazard>,
}

/// Snapshot of the state of [CDEngine] at a given time.
/// The [CDEngine] can take snapshots of itself at any time, and use them to restore to that state later.
#[derive(Clone, Debug)]
pub struct CDESnapshot {
    dynamic_hazards: Vec<Hazard>,
    grid: Option<Grid<HPGCell>>,
}

impl CDEngine {
    pub fn new(bbox: AARectangle, static_hazards: Vec<Hazard>, config: CDEConfig) -> CDEngine {
        let haz_prox_grid = match config.hpg_n_cells {
            0 => None,
            hpg_n_cells => Some(HazardProximityGrid::new(
                bbox.clone(),
                &static_hazards,
                hpg_n_cells,
            )),
        };

        let mut qt_root = QTNode::new(config.quadtree_depth, bbox.clone());

        for haz in static_hazards.iter() {
            qt_root.register_hazard(haz.into());
        }

        CDEngine {
            quadtree: qt_root,
            static_hazards,
            dynamic_hazards: vec![],
            haz_prox_grid,
            config,
            bbox,
            uncommitted_deregisters: vec![],
        }
    }

    /// Registers a new hazard in the CDE.
    pub fn register_hazard(&mut self, hazard: Hazard) {
        debug_assert!(
            !self
                .dynamic_hazards
                .iter()
                .any(|h| h.entity == hazard.entity),
            "Hazard already registered"
        );
        let hazard_in_uncommitted_deregs = self
            .uncommitted_deregisters
            .iter()
            .position(|h| h.entity == hazard.entity);

        let hazard = match hazard_in_uncommitted_deregs {
            Some(index) => {
                let unc_hazard = self.uncommitted_deregisters.swap_remove(index);
                self.quadtree.activate_hazard(unc_hazard.entity);
                unc_hazard
            }
            None => {
                self.quadtree.register_hazard((&hazard).into());
                hazard
            }
        };
        if let Some(hpg) = self.haz_prox_grid.as_mut() {
            hpg.register_hazard(&hazard)
        }
        self.dynamic_hazards.push(hazard);

        debug_assert!(assertions::qt_contains_no_dangling_hazards(self));
    }

    /// Removes a hazard from the CDE.
    /// If `commit_instant` the deregistration is fully executed immediately.
    /// If not, the deregistration causes the hazard to be deactivated in the quadtree and
    /// the hazard_proximity_grid to become dirty (and therefore inaccessible).
    /// <br>
    /// Can be beneficial not to `commit_instant` if multiple hazards are to be deregistered, or if the chance of
    /// restoring from a snapshot with the hazard present is high.
    /// <br>
    /// Call [`Self::commit_deregisters`] to commit all uncommitted deregisters in both quadtree & hazard proximity grid
    /// or [`Self::flush_haz_prox_grid`] to just clear the hazard proximity grid.
    pub fn deregister_hazard(&mut self, hazard_entity: HazardEntity, commit_instant: bool) {
        let haz_index = self
            .dynamic_hazards
            .iter()
            .position(|h| h.entity == hazard_entity)
            .expect("Hazard not found");

        let hazard = self.dynamic_hazards.swap_remove(haz_index);

        match commit_instant {
            true => self.quadtree.deregister_hazard(hazard_entity),
            false => {
                self.quadtree.deactivate_hazard(hazard_entity);
                self.uncommitted_deregisters.push(hazard);
            }
        }
        if let Some(hpg) = self.haz_prox_grid.as_mut() {
            hpg.deregister_hazard(hazard_entity, self.dynamic_hazards.iter(), commit_instant)
        }
        debug_assert!(assertions::qt_contains_no_dangling_hazards(self));
    }

    pub fn create_snapshot(&mut self) -> CDESnapshot {
        self.commit_deregisters();
        assert!(
            self.haz_prox_grid
                .as_ref()
                .map_or(true, |hpg| !hpg.is_dirty())
        );
        CDESnapshot {
            dynamic_hazards: self.dynamic_hazards.clone(),
            grid: self.haz_prox_grid.as_ref().map(|hpg| hpg.grid.clone()),
        }
    }

    /// Restores the CDE to a previous state, as described by the snapshot.
    pub fn restore(&mut self, snapshot: &CDESnapshot) {
        //Quadtree
        let mut hazards_to_remove = self.dynamic_hazards.iter().map(|h| h.entity).collect_vec();
        debug_assert!(hazards_to_remove.len() == self.dynamic_hazards.len());
        let mut hazards_to_add = vec![];

        for hazard in snapshot.dynamic_hazards.iter() {
            let hazard_already_present = hazards_to_remove.iter().position(|h| h == &hazard.entity);
            if let Some(idx) = hazard_already_present {
                //the hazard is already present in the CDE, remove it from the hazards to remove
                hazards_to_remove.swap_remove(idx);
            } else {
                //the hazard is not present in the CDE, add it to the list of hazards to add
                hazards_to_add.push(hazard.clone());
            }
        }

        //Hazards currently registered in the CDE, but not in the snapshot
        for haz_entity in hazards_to_remove.iter() {
            let haz_index = self
                .dynamic_hazards
                .iter()
                .position(|h| &h.entity == haz_entity)
                .expect("Hazard not found");
            self.dynamic_hazards.swap_remove(haz_index);
            self.quadtree.deregister_hazard(*haz_entity);
        }

        //Some of the uncommitted deregisters might be in present in snapshot, if so we can just reactivate them
        for unc_haz in self.uncommitted_deregisters.drain(..) {
            if let Some(pos) = hazards_to_add
                .iter()
                .position(|h| h.entity == unc_haz.entity)
            {
                //the uncommitted removed hazard needs to be activated again
                self.quadtree.activate_hazard(unc_haz.entity);
                self.dynamic_hazards.push(unc_haz);
                hazards_to_add.swap_remove(pos);
            } else {
                //uncommitted deregister is not preset in the snapshot, delete it from the quadtree
                self.quadtree.deregister_hazard(unc_haz.entity);
            }
        }

        for hazard in hazards_to_add {
            self.quadtree.register_hazard((&hazard).into());
            self.dynamic_hazards.push(hazard);
        }

        //Hazard proximity grid
        if let Some(hpg) = self.haz_prox_grid.as_mut() {
            hpg.restore(snapshot.grid.clone().expect("no hpg in snapshot"));
        }

        debug_assert!(self.dynamic_hazards.len() == snapshot.dynamic_hazards.len());
    }

    /// Commits all pending deregisters by actually removing them from the quadtree
    /// and flushing the hazard proximity grid.
    pub fn commit_deregisters(&mut self) {
        for uc_haz in self.uncommitted_deregisters.drain(..) {
            self.quadtree.deregister_hazard(uc_haz.entity);
        }
        if let Some(hpg) = self.haz_prox_grid.as_mut() {
            hpg.flush_deregisters(self.dynamic_hazards.iter())
        }
    }

    pub fn quadtree(&self) -> &QTNode {
        &self.quadtree
    }

    pub fn number_of_nodes(&self) -> usize {
        1 + self.quadtree.get_number_of_children()
    }

    pub fn bbox(&self) -> &AARectangle {
        &self.bbox
    }

    pub fn smallest_qt_node_dimension(&self) -> fsize {
        let bbox = &self.quadtree.bbox;
        let level = self.quadtree.level;
        //every level, the dimension is halved
        bbox.width() / (2.0 as fsize).powi(level as i32)
    }

    pub fn config(&self) -> CDEConfig {
        self.config
    }

    /// If the grid has uncommitted deregisters, it is considered dirty and cannot be accessed.
    /// To flush all the changes, call [`Self::flush_haz_prox_grid`].
    pub fn haz_prox_grid(&self) -> Result<&HazardProximityGrid, DirtyState> {
        let grid = self.haz_prox_grid.as_ref().expect("no hpg present");
        match grid.is_dirty() {
            true => Err(DirtyState),
            false => Ok(grid),
        }
    }

    /// Flushes all uncommitted deregisters in the [`HazardProximityGrid`].
    pub fn flush_haz_prox_grid(&mut self) {
        if let Some(hpg) = self.haz_prox_grid.as_mut() {
            hpg.flush_deregisters(self.dynamic_hazards.iter())
        }
    }

    pub fn has_uncommitted_deregisters(&self) -> bool {
        !self.uncommitted_deregisters.is_empty()
    }

    /// Returns all hazards in the CDE, which can change during the lifetime of the CDE.
    pub fn dynamic_hazards(&self) -> &Vec<Hazard> {
        &self.dynamic_hazards
    }

    /// Returns all hazards in the CDE, which cannot change during the lifetime of the CDE.
    pub fn static_hazards(&self) -> &Vec<Hazard> {
        &self.static_hazards
    }

    /// Returns all hazards in the CDE, both static and dynamic.
    pub fn all_hazards(&self) -> impl Iterator<Item = &Hazard> {
        self.static_hazards
            .iter()
            .chain(self.dynamic_hazards.iter())
    }

    ///Checks whether a reference simple polygon, with a transformation applies, collides with any of the hazards.
    ///The check is first done on the surrogate, then with the actual shape.
    ///A buffer shape is used as a temporary storage for the transformed shape.
    /// # Arguments
    /// * `reference_shape` - The shape to be checked for collisions
    /// * `transform` - The transformation to be applied to the reference shape
    /// * `buffer_shape` - A temporary storage for the transformed shape
    /// * `irrelevant_hazards` - entities to be ignored during the check
    pub fn surrogate_or_poly_collides(
        &self,
        reference_shape: &SimplePolygon,
        transform: &Transformation,
        buffer_shape: &mut SimplePolygon,
        irrelevant_hazards: &[HazardEntity],
    ) -> bool {
        //Begin with checking the surrogate for collisions
        match self.surrogate_collides(reference_shape.surrogate(), transform, irrelevant_hazards) {
            true => true,
            false => {
                //Transform the reference_shape and store the result in the buffer_shape
                buffer_shape.transform_from(reference_shape, transform);
                self.poly_collides(buffer_shape, irrelevant_hazards)
            }
        }
    }

    ///Checks whether a simple polygon collides with any of the (relevant) hazards
    /// # Arguments
    /// * `shape` - The shape (already transformed) to be checked for collisions
    /// * `irrelevant_hazards` - entities to be ignored during the check
    pub fn poly_collides(
        &self,
        shape: &SimplePolygon,
        irrelevant_hazards: &[HazardEntity],
    ) -> bool {
        match self.bbox.relation_to(&shape.bbox()) {
            //Not fully inside bbox => definite collision
            GeoRelation::Disjoint | GeoRelation::Enclosed | GeoRelation::Intersecting => true,
            GeoRelation::Surrounding => {
                self.poly_collides_by_edge_intersection(shape, irrelevant_hazards)
                    || self.poly_collides_by_containment(shape, irrelevant_hazards)
            }
        }
    }

    /// Checks whether a surrogate collides with any of the (relevant) hazards.
    /// # Arguments
    /// * `base_surrogate` - The (untransformed) surrogate to be checked for collisions
    /// * `transform` - The transformation to be applied to the surrogate
    /// * `irrelevant_hazards` - entities to be ignored during the check
    pub fn surrogate_collides(
        &self,
        base_surrogate: &SPSurrogate,
        transform: &Transformation,
        irrelevant_hazards: &[HazardEntity],
    ) -> bool {
        for pole in base_surrogate.ff_poles() {
            let t_pole = pole.transform_clone(transform);
            if self
                .quadtree
                .collides(&t_pole, irrelevant_hazards)
                .is_some()
            {
                return true;
            }
        }
        for pier in base_surrogate.ff_piers() {
            let t_pier = pier.transform_clone(transform);
            if self
                .quadtree
                .collides(&t_pier, irrelevant_hazards)
                .is_some()
            {
                return true;
            }
        }
        false
    }

    /// Checks whether a point definitely collides with any of the (relevant) hazards.
    /// Only fully hazardous nodes in the quadtree are considered.
    pub fn point_definitely_collides_with(&self, point: &Point, entity: HazardEntity) -> Tribool {
        match self.bbox.collides_with(point) {
            false => Tribool::Indeterminate, //point is outside the quadtree, so no information available
            true => self.quadtree.definitely_collides_with(point, entity),
        }
    }

    /// Checks whether an edge definitely collides with any of the (relevant) hazards.
    /// Only fully hazardous nodes in the quadtree are considered.
    pub fn edge_definitely_collides(
        &self,
        edge: &Edge,
        irrelevant_hazards: &[HazardEntity],
    ) -> Tribool {
        match !self.bbox.collides_with(&edge.start) || !self.bbox.collides_with(&edge.end) {
            true => Tribool::True, //if either the start or end of the edge is outside the quadtree, it definitely collides
            false => self.quadtree.definitely_collides(edge, irrelevant_hazards),
        }
    }

    /// Checks whether a circle definitely collides with any of the (relevant) hazards.
    /// Only fully hazardous nodes in the quadtree are considered.
    pub fn circle_definitely_collides(
        &self,
        circle: &Circle,
        irrelevant_hazards: &[HazardEntity],
    ) -> Tribool {
        match self.bbox.collides_with(&circle.center) {
            false => Tribool::True, //outside the quadtree, so definitely collides
            true => self
                .quadtree
                .definitely_collides(circle, irrelevant_hazards),
        }
    }

    fn poly_collides_by_edge_intersection(
        &self,
        shape: &SimplePolygon,
        irrelevant_hazards: &[HazardEntity],
    ) -> bool {
        shape
            .edge_iter()
            .any(|e| self.quadtree.collides(&e, irrelevant_hazards).is_some())
    }

    fn poly_collides_by_containment(
        &self,
        shape: &SimplePolygon,
        irrelevant_hazards: &[HazardEntity],
    ) -> bool {
        //collect all active and non-ignored hazards
        self.all_hazards()
            .filter(|h| h.active && !irrelevant_hazards.contains(&h.entity))
            .any(|haz| self.poly_or_hazard_are_contained(shape, haz))
    }

    pub fn poly_or_hazard_are_contained(&self, shape: &SimplePolygon, haz: &Hazard) -> bool {
        //Due to possible fp issues, we check if the bboxes are "almost" related
        //"almost" meaning that, when edges are very close together, they are considered equal.
        //Some relations which would normally be seen as Intersecting are now being considered Enclosed/Surrounding
        let haz_shape = haz.shape.as_ref();
        let bbox_relation = haz_shape.bbox().almost_relation_to(&shape.bbox());

        let (s_mu, s_omega) = match bbox_relation {
            GeoRelation::Surrounding => (shape, haz_shape), //inclusion possible
            GeoRelation::Enclosed => (haz_shape, shape),    //inclusion possible
            GeoRelation::Disjoint | GeoRelation::Intersecting => {
                //no inclusion is possible
                return match haz.entity.position() {
                    GeoPosition::Interior => false,
                    GeoPosition::Exterior => true,
                };
            }
        };

        if std::ptr::eq(haz_shape, s_omega) {
            //s_omega is registered in the quadtree.
            //maybe the quadtree can help us.
            if let Ok(collides) = self
                .quadtree
                .definitely_collides_with(&s_mu.poi.center, haz.entity)
                .try_into()
            {
                return collides;
            }
        }
        let inclusion = s_omega.collides_with(&s_mu.poi.center);

        match haz.entity.position() {
            GeoPosition::Interior => inclusion,
            GeoPosition::Exterior => !inclusion,
        }
    }

    /// Collects all hazards with which the polygon collides.
    /// Any hazards in `irrelevant_hazards` are ignored.
    pub fn collect_poly_collisions(
        &self,
        shape: &SimplePolygon,
        irrelevant_hazards: &[HazardEntity],
    ) -> DetectionMap {
        let mut detection_map = DetectionMap::new();
        self.collect_poly_collisions_in_detector(shape, irrelevant_hazards, &mut detection_map);
        detection_map
    }

    /// Collects all hazards with which the polygon collides and stores them in the detector.
    /// Any hazards in `irrelevant_hazards` are ignored, as well as hazards present in the detector before the call.
    pub fn collect_poly_collisions_in_detector(
        &self,
        shape: &SimplePolygon,
        irrelevant_hazards: &[HazardEntity],
        detector: &mut impl HazardDetector,
    ) {
        //temporarily add the irrelevant hazards to the detector
        irrelevant_hazards
            .iter()
            .for_each(|i_haz| detector.push(i_haz.clone()));

        if self.bbox.relation_to(&shape.bbox()) != GeoRelation::Surrounding {
            detector.push(HazardEntity::BinExterior)
        }

        //collect all colliding entities due to edge intersection
        shape
            .edge_iter()
            .for_each(|e| self.quadtree.collect_collisions(&e, detector));

        //collect all colliding entities due to containment
        self.all_hazards().filter(|h| h.active).for_each(|h| {
            if !detector.contains(&h.entity) && self.poly_or_hazard_are_contained(shape, h) {
                detector.push(h.entity);
            }
        });

        //drain the irrelevant hazards, leaving only the colliding entities
        irrelevant_hazards
            .iter()
            .for_each(|i_haz| detector.remove(i_haz));
    }

    /// Collects all hazards with which the surrogate collides.
    /// Any hazards in `irrelevant_hazards` are ignored.
    pub fn collect_surrogate_collisions(
        &self,
        base_surrogate: &SPSurrogate,
        transform: &Transformation,
        irrelevant_hazards: &[HazardEntity],
    ) -> DetectionMap {
        let mut detection_map = DetectionMap::new();
        self.collect_surrogate_collisions_in_detector(
            base_surrogate,
            transform,
            irrelevant_hazards,
            &mut detection_map,
        );
        detection_map
    }

    /// Collects all hazards with which the surrogate collides and stores them in the detector.
    /// Any hazards in `irrelevant_hazards` are ignored, as well as hazards present in the detector before the call.
    pub fn collect_surrogate_collisions_in_detector(
        &self,
        base_surrogate: &SPSurrogate,
        transform: &Transformation,
        irrelevant_hazards: &[HazardEntity],
        detector: &mut impl HazardDetector,
    ) {
        //temporarily add the irrelevant hazards to the buffer
        irrelevant_hazards
            .iter()
            .for_each(|i_haz| detector.push(i_haz.clone()));

        for pole in base_surrogate.ff_poles() {
            let t_pole = pole.transform_clone(transform);
            self.quadtree.collect_collisions(&t_pole, detector)
        }
        for pier in base_surrogate.ff_piers() {
            let t_pier = pier.transform_clone(transform);
            self.quadtree.collect_collisions(&t_pier, detector);
        }

        //drain the irrelevant hazards, leaving only the colliding entities
        irrelevant_hazards
            .iter()
            .for_each(|i_haz| detector.remove(i_haz));
    }

    /// Collects all hazards potentially colliding with the given bounding box.
    /// This is an overestimation, as it's limited by the quadtree resolution.
    pub fn collect_potential_hazards_within(
        &self,
        bbox: &AARectangle,
        detector: &mut impl HazardDetector,
    ) {
        self.quadtree
            .collect_potential_hazards_within(bbox, detector);
    }
}