jagua_rs/collision_detection/cd_engine.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
use crate::collision_detection::hazard::Hazard;
use crate::collision_detection::hazard::HazardEntity;
use crate::collision_detection::hazard_helpers::{DetectionMap, HazardDetector};
use crate::collision_detection::hpg::grid::Grid;
use crate::collision_detection::hpg::hazard_proximity_grid::{DirtyState, HazardProximityGrid};
use crate::collision_detection::hpg::hpg_cell::HPGCell;
use crate::collision_detection::quadtree::qt_node::QTNode;
use crate::fsize;
use crate::geometry::fail_fast::sp_surrogate::SPSurrogate;
use crate::geometry::geo_enums::{GeoPosition, GeoRelation};
use crate::geometry::geo_traits::{CollidesWith, Shape, Transformable, TransformableFrom};
use crate::geometry::primitives::aa_rectangle::AARectangle;
use crate::geometry::primitives::circle::Circle;
use crate::geometry::primitives::edge::Edge;
use crate::geometry::primitives::point::Point;
use crate::geometry::primitives::simple_polygon::SimplePolygon;
use crate::geometry::transformation::Transformation;
use crate::util::assertions;
use crate::util::config::CDEConfig;
use itertools::Itertools;
use tribool::Tribool;
/// The Collision Detection Engine (CDE).
/// The CDE can resolve a range of collision queries
/// and update its state by registering and deregistering hazards.
#[derive(Clone, Debug)]
pub struct CDEngine {
pub quadtree: QTNode,
pub static_hazards: Vec<Hazard>,
pub dynamic_hazards: Vec<Hazard>,
pub haz_prox_grid: Option<HazardProximityGrid>,
pub config: CDEConfig,
pub bbox: AARectangle,
pub uncommitted_deregisters: Vec<Hazard>,
}
/// Snapshot of the state of [CDEngine] at a given time.
/// The [CDEngine] can take snapshots of itself at any time, and use them to restore to that state later.
#[derive(Clone, Debug)]
pub struct CDESnapshot {
dynamic_hazards: Vec<Hazard>,
grid: Option<Grid<HPGCell>>,
}
impl CDEngine {
pub fn new(bbox: AARectangle, static_hazards: Vec<Hazard>, config: CDEConfig) -> CDEngine {
let haz_prox_grid = match config.hpg_n_cells {
0 => None,
hpg_n_cells => Some(HazardProximityGrid::new(
bbox.clone(),
&static_hazards,
hpg_n_cells,
)),
};
let mut qt_root = QTNode::new(config.quadtree_depth, bbox.clone());
for haz in static_hazards.iter() {
qt_root.register_hazard(haz.into());
}
CDEngine {
quadtree: qt_root,
static_hazards,
dynamic_hazards: vec![],
haz_prox_grid,
config,
bbox,
uncommitted_deregisters: vec![],
}
}
/// Registers a new hazard in the CDE.
pub fn register_hazard(&mut self, hazard: Hazard) {
debug_assert!(
!self
.dynamic_hazards
.iter()
.any(|h| h.entity == hazard.entity),
"Hazard already registered"
);
let hazard_in_uncommitted_deregs = self
.uncommitted_deregisters
.iter()
.position(|h| h.entity == hazard.entity);
let hazard = match hazard_in_uncommitted_deregs {
Some(index) => {
let unc_hazard = self.uncommitted_deregisters.swap_remove(index);
self.quadtree.activate_hazard(unc_hazard.entity);
unc_hazard
}
None => {
self.quadtree.register_hazard((&hazard).into());
hazard
}
};
if let Some(hpg) = self.haz_prox_grid.as_mut() {
hpg.register_hazard(&hazard)
}
self.dynamic_hazards.push(hazard);
debug_assert!(assertions::qt_contains_no_dangling_hazards(self));
}
/// Removes a hazard from the CDE.
/// If `commit_instant` the deregistration is fully executed immediately.
/// If not, the deregistration causes the hazard to be deactivated in the quadtree and
/// the hazard_proximity_grid to become dirty (and therefore inaccessible).
/// <br>
/// Can be beneficial not to `commit_instant` if multiple hazards are to be deregistered, or if the chance of
/// restoring from a snapshot with the hazard present is high.
/// <br>
/// Call [`Self::commit_deregisters`] to commit all uncommitted deregisters in both quadtree & hazard proximity grid
/// or [`Self::flush_haz_prox_grid`] to just clear the hazard proximity grid.
pub fn deregister_hazard(&mut self, hazard_entity: HazardEntity, commit_instant: bool) {
let haz_index = self
.dynamic_hazards
.iter()
.position(|h| h.entity == hazard_entity)
.expect("Hazard not found");
let hazard = self.dynamic_hazards.swap_remove(haz_index);
match commit_instant {
true => self.quadtree.deregister_hazard(hazard_entity),
false => {
self.quadtree.deactivate_hazard(hazard_entity);
self.uncommitted_deregisters.push(hazard);
}
}
if let Some(hpg) = self.haz_prox_grid.as_mut() {
hpg.deregister_hazard(hazard_entity, self.dynamic_hazards.iter(), commit_instant)
}
debug_assert!(assertions::qt_contains_no_dangling_hazards(self));
}
pub fn create_snapshot(&mut self) -> CDESnapshot {
self.commit_deregisters();
assert!(
self.haz_prox_grid
.as_ref()
.map_or(true, |hpg| !hpg.is_dirty())
);
CDESnapshot {
dynamic_hazards: self.dynamic_hazards.clone(),
grid: self.haz_prox_grid.as_ref().map(|hpg| hpg.grid.clone()),
}
}
/// Restores the CDE to a previous state, as described by the snapshot.
pub fn restore(&mut self, snapshot: &CDESnapshot) {
//Quadtree
let mut hazards_to_remove = self.dynamic_hazards.iter().map(|h| h.entity).collect_vec();
debug_assert!(hazards_to_remove.len() == self.dynamic_hazards.len());
let mut hazards_to_add = vec![];
for hazard in snapshot.dynamic_hazards.iter() {
let hazard_already_present = hazards_to_remove.iter().position(|h| h == &hazard.entity);
if let Some(idx) = hazard_already_present {
//the hazard is already present in the CDE, remove it from the hazards to remove
hazards_to_remove.swap_remove(idx);
} else {
//the hazard is not present in the CDE, add it to the list of hazards to add
hazards_to_add.push(hazard.clone());
}
}
//Hazards currently registered in the CDE, but not in the snapshot
for haz_entity in hazards_to_remove.iter() {
let haz_index = self
.dynamic_hazards
.iter()
.position(|h| &h.entity == haz_entity)
.expect("Hazard not found");
self.dynamic_hazards.swap_remove(haz_index);
self.quadtree.deregister_hazard(*haz_entity);
}
//Some of the uncommitted deregisters might be in present in snapshot, if so we can just reactivate them
for unc_haz in self.uncommitted_deregisters.drain(..) {
if let Some(pos) = hazards_to_add
.iter()
.position(|h| h.entity == unc_haz.entity)
{
//the uncommitted removed hazard needs to be activated again
self.quadtree.activate_hazard(unc_haz.entity);
self.dynamic_hazards.push(unc_haz);
hazards_to_add.swap_remove(pos);
} else {
//uncommitted deregister is not preset in the snapshot, delete it from the quadtree
self.quadtree.deregister_hazard(unc_haz.entity);
}
}
for hazard in hazards_to_add {
self.quadtree.register_hazard((&hazard).into());
self.dynamic_hazards.push(hazard);
}
//Hazard proximity grid
if let Some(hpg) = self.haz_prox_grid.as_mut() {
hpg.restore(snapshot.grid.clone().expect("no hpg in snapshot"));
}
debug_assert!(self.dynamic_hazards.len() == snapshot.dynamic_hazards.len());
}
/// Commits all pending deregisters by actually removing them from the quadtree
/// and flushing the hazard proximity grid.
pub fn commit_deregisters(&mut self) {
for uc_haz in self.uncommitted_deregisters.drain(..) {
self.quadtree.deregister_hazard(uc_haz.entity);
}
if let Some(hpg) = self.haz_prox_grid.as_mut() {
hpg.flush_deregisters(self.dynamic_hazards.iter())
}
}
pub fn quadtree(&self) -> &QTNode {
&self.quadtree
}
pub fn number_of_nodes(&self) -> usize {
1 + self.quadtree.get_number_of_children()
}
pub fn bbox(&self) -> &AARectangle {
&self.bbox
}
pub fn smallest_qt_node_dimension(&self) -> fsize {
let bbox = &self.quadtree.bbox;
let level = self.quadtree.level;
//every level, the dimension is halved
bbox.width() / (2.0 as fsize).powi(level as i32)
}
pub fn config(&self) -> CDEConfig {
self.config
}
/// If the grid has uncommitted deregisters, it is considered dirty and cannot be accessed.
/// To flush all the changes, call [`Self::flush_haz_prox_grid`].
pub fn haz_prox_grid(&self) -> Result<&HazardProximityGrid, DirtyState> {
let grid = self.haz_prox_grid.as_ref().expect("no hpg present");
match grid.is_dirty() {
true => Err(DirtyState),
false => Ok(grid),
}
}
/// Flushes all uncommitted deregisters in the [`HazardProximityGrid`].
pub fn flush_haz_prox_grid(&mut self) {
if let Some(hpg) = self.haz_prox_grid.as_mut() {
hpg.flush_deregisters(self.dynamic_hazards.iter())
}
}
pub fn has_uncommitted_deregisters(&self) -> bool {
!self.uncommitted_deregisters.is_empty()
}
/// Returns all hazards in the CDE, which can change during the lifetime of the CDE.
pub fn dynamic_hazards(&self) -> &Vec<Hazard> {
&self.dynamic_hazards
}
/// Returns all hazards in the CDE, which cannot change during the lifetime of the CDE.
pub fn static_hazards(&self) -> &Vec<Hazard> {
&self.static_hazards
}
/// Returns all hazards in the CDE, both static and dynamic.
pub fn all_hazards(&self) -> impl Iterator<Item = &Hazard> {
self.static_hazards
.iter()
.chain(self.dynamic_hazards.iter())
}
///Checks whether a reference simple polygon, with a transformation applies, collides with any of the hazards.
///The check is first done on the surrogate, then with the actual shape.
///A buffer shape is used as a temporary storage for the transformed shape.
/// # Arguments
/// * `reference_shape` - The shape to be checked for collisions
/// * `transform` - The transformation to be applied to the reference shape
/// * `buffer_shape` - A temporary storage for the transformed shape
/// * `irrelevant_hazards` - entities to be ignored during the check
pub fn surrogate_or_poly_collides(
&self,
reference_shape: &SimplePolygon,
transform: &Transformation,
buffer_shape: &mut SimplePolygon,
irrelevant_hazards: &[HazardEntity],
) -> bool {
//Begin with checking the surrogate for collisions
match self.surrogate_collides(reference_shape.surrogate(), transform, irrelevant_hazards) {
true => true,
false => {
//Transform the reference_shape and store the result in the buffer_shape
buffer_shape.transform_from(reference_shape, transform);
self.poly_collides(buffer_shape, irrelevant_hazards)
}
}
}
///Checks whether a simple polygon collides with any of the (relevant) hazards
/// # Arguments
/// * `shape` - The shape (already transformed) to be checked for collisions
/// * `irrelevant_hazards` - entities to be ignored during the check
pub fn poly_collides(
&self,
shape: &SimplePolygon,
irrelevant_hazards: &[HazardEntity],
) -> bool {
match self.bbox.relation_to(&shape.bbox()) {
//Not fully inside bbox => definite collision
GeoRelation::Disjoint | GeoRelation::Enclosed | GeoRelation::Intersecting => true,
GeoRelation::Surrounding => {
self.poly_collides_by_edge_intersection(shape, irrelevant_hazards)
|| self.poly_collides_by_containment(shape, irrelevant_hazards)
}
}
}
/// Checks whether a surrogate collides with any of the (relevant) hazards.
/// # Arguments
/// * `base_surrogate` - The (untransformed) surrogate to be checked for collisions
/// * `transform` - The transformation to be applied to the surrogate
/// * `irrelevant_hazards` - entities to be ignored during the check
pub fn surrogate_collides(
&self,
base_surrogate: &SPSurrogate,
transform: &Transformation,
irrelevant_hazards: &[HazardEntity],
) -> bool {
for pole in base_surrogate.ff_poles() {
let t_pole = pole.transform_clone(transform);
if self
.quadtree
.collides(&t_pole, irrelevant_hazards)
.is_some()
{
return true;
}
}
for pier in base_surrogate.ff_piers() {
let t_pier = pier.transform_clone(transform);
if self
.quadtree
.collides(&t_pier, irrelevant_hazards)
.is_some()
{
return true;
}
}
false
}
/// Checks whether a point definitely collides with any of the (relevant) hazards.
/// Only fully hazardous nodes in the quadtree are considered.
pub fn point_definitely_collides_with(&self, point: &Point, entity: HazardEntity) -> Tribool {
match self.bbox.collides_with(point) {
false => Tribool::Indeterminate, //point is outside the quadtree, so no information available
true => self.quadtree.definitely_collides_with(point, entity),
}
}
/// Checks whether an edge definitely collides with any of the (relevant) hazards.
/// Only fully hazardous nodes in the quadtree are considered.
pub fn edge_definitely_collides(
&self,
edge: &Edge,
irrelevant_hazards: &[HazardEntity],
) -> Tribool {
match !self.bbox.collides_with(&edge.start) || !self.bbox.collides_with(&edge.end) {
true => Tribool::True, //if either the start or end of the edge is outside the quadtree, it definitely collides
false => self.quadtree.definitely_collides(edge, irrelevant_hazards),
}
}
/// Checks whether a circle definitely collides with any of the (relevant) hazards.
/// Only fully hazardous nodes in the quadtree are considered.
pub fn circle_definitely_collides(
&self,
circle: &Circle,
irrelevant_hazards: &[HazardEntity],
) -> Tribool {
match self.bbox.collides_with(&circle.center) {
false => Tribool::True, //outside the quadtree, so definitely collides
true => self
.quadtree
.definitely_collides(circle, irrelevant_hazards),
}
}
fn poly_collides_by_edge_intersection(
&self,
shape: &SimplePolygon,
irrelevant_hazards: &[HazardEntity],
) -> bool {
shape
.edge_iter()
.any(|e| self.quadtree.collides(&e, irrelevant_hazards).is_some())
}
fn poly_collides_by_containment(
&self,
shape: &SimplePolygon,
irrelevant_hazards: &[HazardEntity],
) -> bool {
//collect all active and non-ignored hazards
self.all_hazards()
.filter(|h| h.active && !irrelevant_hazards.contains(&h.entity))
.any(|haz| self.poly_or_hazard_are_contained(shape, haz))
}
pub fn poly_or_hazard_are_contained(&self, shape: &SimplePolygon, haz: &Hazard) -> bool {
//Due to possible fp issues, we check if the bboxes are "almost" related
//"almost" meaning that, when edges are very close together, they are considered equal.
//Some relations which would normally be seen as Intersecting are now being considered Enclosed/Surrounding
let haz_shape = haz.shape.as_ref();
let bbox_relation = haz_shape.bbox().almost_relation_to(&shape.bbox());
let (s_mu, s_omega) = match bbox_relation {
GeoRelation::Surrounding => (shape, haz_shape), //inclusion possible
GeoRelation::Enclosed => (haz_shape, shape), //inclusion possible
GeoRelation::Disjoint | GeoRelation::Intersecting => {
//no inclusion is possible
return match haz.entity.position() {
GeoPosition::Interior => false,
GeoPosition::Exterior => true,
};
}
};
if std::ptr::eq(haz_shape, s_omega) {
//s_omega is registered in the quadtree.
//maybe the quadtree can help us.
if let Ok(collides) = self
.quadtree
.definitely_collides_with(&s_mu.poi.center, haz.entity)
.try_into()
{
return collides;
}
}
let inclusion = s_omega.collides_with(&s_mu.poi.center);
match haz.entity.position() {
GeoPosition::Interior => inclusion,
GeoPosition::Exterior => !inclusion,
}
}
/// Collects all hazards with which the polygon collides.
/// Any hazards in `irrelevant_hazards` are ignored.
pub fn collect_poly_collisions(
&self,
shape: &SimplePolygon,
irrelevant_hazards: &[HazardEntity],
) -> DetectionMap {
let mut detection_map = DetectionMap::new();
self.collect_poly_collisions_in_detector(shape, irrelevant_hazards, &mut detection_map);
detection_map
}
/// Collects all hazards with which the polygon collides and stores them in the detector.
/// Any hazards in `irrelevant_hazards` are ignored, as well as hazards present in the detector before the call.
pub fn collect_poly_collisions_in_detector(
&self,
shape: &SimplePolygon,
irrelevant_hazards: &[HazardEntity],
detector: &mut impl HazardDetector,
) {
//temporarily add the irrelevant hazards to the detector
irrelevant_hazards
.iter()
.for_each(|i_haz| detector.push(i_haz.clone()));
if self.bbox.relation_to(&shape.bbox()) != GeoRelation::Surrounding {
detector.push(HazardEntity::BinExterior)
}
//collect all colliding entities due to edge intersection
shape
.edge_iter()
.for_each(|e| self.quadtree.collect_collisions(&e, detector));
//collect all colliding entities due to containment
self.all_hazards().filter(|h| h.active).for_each(|h| {
if !detector.contains(&h.entity) && self.poly_or_hazard_are_contained(shape, h) {
detector.push(h.entity);
}
});
//drain the irrelevant hazards, leaving only the colliding entities
irrelevant_hazards
.iter()
.for_each(|i_haz| detector.remove(i_haz));
}
/// Collects all hazards with which the surrogate collides.
/// Any hazards in `irrelevant_hazards` are ignored.
pub fn collect_surrogate_collisions(
&self,
base_surrogate: &SPSurrogate,
transform: &Transformation,
irrelevant_hazards: &[HazardEntity],
) -> DetectionMap {
let mut detection_map = DetectionMap::new();
self.collect_surrogate_collisions_in_detector(
base_surrogate,
transform,
irrelevant_hazards,
&mut detection_map,
);
detection_map
}
/// Collects all hazards with which the surrogate collides and stores them in the detector.
/// Any hazards in `irrelevant_hazards` are ignored, as well as hazards present in the detector before the call.
pub fn collect_surrogate_collisions_in_detector(
&self,
base_surrogate: &SPSurrogate,
transform: &Transformation,
irrelevant_hazards: &[HazardEntity],
detector: &mut impl HazardDetector,
) {
//temporarily add the irrelevant hazards to the buffer
irrelevant_hazards
.iter()
.for_each(|i_haz| detector.push(i_haz.clone()));
for pole in base_surrogate.ff_poles() {
let t_pole = pole.transform_clone(transform);
self.quadtree.collect_collisions(&t_pole, detector)
}
for pier in base_surrogate.ff_piers() {
let t_pier = pier.transform_clone(transform);
self.quadtree.collect_collisions(&t_pier, detector);
}
//drain the irrelevant hazards, leaving only the colliding entities
irrelevant_hazards
.iter()
.for_each(|i_haz| detector.remove(i_haz));
}
/// Collects all hazards potentially colliding with the given bounding box.
/// This is an overestimation, as it's limited by the quadtree resolution.
pub fn collect_potential_hazards_within(
&self,
bbox: &AARectangle,
detector: &mut impl HazardDetector,
) {
self.quadtree
.collect_potential_hazards_within(bbox, detector);
}
}